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Hydrogen and galaxies (10 points)
This problem aims to study the peculiar physics of galaxies, such as their dynamics and structure. In
particular, we explain how to measure the mass distribution of our galaxy from the inside. For this we
will focus on hydrogen, its main constituent.

Throughout this problem we will only use ħ, defined as ħ=ℎ/2𝜋.

Part A - Introduction
Bohr model

We assume that the hydrogen atom consists of a non-relativistic electron, with mass𝑚𝑒, orbiting a fixed
proton. Throughout this part, we assume its motion is on a circular orbit.

A.1 Determine the electron's velocity 𝑣 in a circular orbit of radius 𝑟. 0.2pt

SOLUTION:

Newton's second law on the electron in the electrical field of the proton for a circular orbit and projected

on −→𝑢𝑟 : −𝑚𝑒
𝑣2
𝑟 =− 𝑒2

4𝜋𝜀0𝑟2 hence 𝑣 = 𝑒2
4𝜋𝜀0𝑚𝑒𝑟

Marking Scheme

A.1.1 : Using Newton's second law 0.1
A.1.2 : Expression of the velocity 0.1

In the Bohrmodel, we assume themagnitude of the electron's angularmomentum 𝐿 is quantized, 𝐿 = 𝑛ħ
where 𝑛 > 0 is an integer. We define 𝛼 = 𝑒2

4𝜋𝜀0ħ𝑐 ≈ 7.27×10−3.

A.2 Show that the radius of each orbit is given by 𝑟𝑛 = 𝑛2𝑟1, where 𝑟1 is called the
Bohr radius. Express 𝑟1 in terms of 𝛼, 𝑚𝑒, 𝑐 and ħ and calculate its numerical
value with 3 digits. Express 𝑣1, the velocity on the orbit of radius 𝑟1, in terms of
𝛼 and 𝑐.

0.5pt

SOLUTION:

If the norm 𝐿 of the angular momentum is quantified, for a circular orbit of radius 𝑟𝑛 it is 𝐿 =𝑚𝑒𝑟𝑛𝑣𝑛 =𝑛ħ.
In the previous question, we have already obtained a relation between 𝑟 and 𝑣 that can be used for 𝑟𝑛
and 𝑣𝑛 and gives 𝑣𝑛 = 𝑒2

4𝜋𝜖0𝑚𝑒𝑟𝑛 = 𝛼ħ𝑐
𝑚𝑒𝑟𝑛 . Then using the quantifed expression we get 𝑟𝑛 =

𝑛ħ
𝑚𝑒𝑣𝑛 =

𝑛ħ
𝑚𝑒

𝑚𝑒𝑟𝑛
𝛼ħ𝑐

thus 𝑟𝑛 = ħ𝑛2
𝛼𝑚𝑒𝑐 and then 𝑟1 = ħ

𝛼𝑚𝑒𝑐 . For the numerical value we previously compute 𝛼 = 7.27×10−3 and

then 𝑟1 = 5.31×10−11 m . For the velocity, we get𝑚𝑒𝑣21 = 𝑒2
4𝜋𝜀0𝑟1 =

𝑒2𝑚𝑒𝑣1
4𝜋𝜀0ħ and then 𝑣1 = 𝑒2

4𝜋𝜀0ħ =𝛼𝑐 .

Marker Scheme
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A.2.1 : Expression of 𝑟𝑛 0.1
A.2.2 : Expression of 𝑟1 0.1
A.2.3 : Numerical value for 𝑟1 0.1
A.2.4 : Expression of 𝑣1 0.2

A.3 Determine the electron's mechanical energy 𝐸𝑛 on an orbit of radius 𝑟𝑛in terms
of 𝑒, 𝜀0, 𝑟1 and 𝑛. Determine 𝐸1 in the ground state in terms of 𝛼, 𝑚𝑒 and 𝑐.
Compute its numerical value in eV.

0.5pt

SOLUTION:

The mechanical energy is 𝐸𝑛 = 1
2𝑚𝑒𝑣2𝑛 − 𝑒2

4𝜋𝜀0𝑟𝑛 = − 𝑒2
8𝜋𝜀0𝑟𝑛 , hence 𝐸𝑛 =− 𝑒2

8𝜋𝜀0𝑛2𝑟1 then for the ground state

𝐸1 =− 𝑒2
8𝜋𝜀0𝑟1 . Using the expression of 𝛼 , we get the beautiful formula 𝐸1 =− 1

2𝛼2𝑚𝑒𝑐2 . The numerical

value is 𝐸1 =−2.17×10−18 J which corresponds to 𝐸1 =−13.6 eV .

Marker Scheme

A.3.1 : Expression for 𝐸𝑛 0.2
A.3.2 : Expression for 𝐸1 with 𝛼 0.2
A.3.3 : Numerical value for 𝐸1 0.1

Hydrogen fine and hyperfine structures

The rare spontaneous inversion of the electron's spin causes a photon to be emitted on average once
per 10million years per hydrogen atom. This emission serves as a hydrogen tracer in the universe and is
thus fundamental in astrophysics. We will study the transition responsible for this emission in two steps.

First, consider the interaction between the electron spin and the relative motion of the electron and the
proton. Working in the electron's frame of reference, the proton orbits the electron at a distance 𝑟1. This
produces a magnetic field

−→𝐵1.

A.4 Determine the magnitude 𝐵1 of
−→𝐵1 at the position of the electron in terms of 𝜇0,

𝑒, 𝛼, 𝑐 and 𝑟1.
0.5pt

SOLUTION:

The period of the motion is : 𝑇 = 2𝜋𝑟1
𝑣1 .

The current 𝑖 corresponding to the orbit of the proton is 𝑖 = 𝑒
𝑇 hence 𝑖 = 𝑒𝑣1

2𝜋𝑟1 =
𝑒𝛼𝑐
2𝜋𝑟1 .

Themagnetic field created by a loop with current 𝑖 and radius 𝑅 is : 𝐵 = 𝜇0𝑖
2𝑅 , which here gives 𝐵1 = 𝜇0𝑒𝛼𝑐

4𝜋𝑟21.

Marker Scheme
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A.4.1 : Expression for the period 0.1
A.4.2 : Expression for the current 0.2
A.4.3 : General expression for 𝐵 0.1
A.4.4 : Inject 𝑖 into 𝐵 0.1

Second, the electron spin creates a magnetic moment
−→ℳ𝑠. Its magnitude is roughlyℳ𝑠 = 𝑒

𝑚𝑒
ħ. The fine

(F) structure is related to the energy difference 𝛥𝐸F between an electron with a magnetic moment
−→ℳ𝑠

parallel to
−→𝐵1 and that of an electron with

−→ℳ𝑠 anti-parallel to
−→𝐵1. Similarly, the hyperfine (HF) structure is

related to the energy difference 𝛥𝐸HF, due to the interaction between parallel and anti-parallel magnetic
moments of the electron and the proton. It is known to be approximately 𝛥𝐸HF ≃ 3.72𝑚𝑒

𝑚𝑝
𝛥𝐸F where𝑚𝑝 is

the proton mass.

A.5 Express 𝛥𝐸F as a function of 𝛼 and 𝐸1.
Express the wavelength 𝜆HF of a photon emitted during a transition between
the two states of the hyperfine structure and give its numerical value with two
digits.

0.5pt

SOLUTION:

The potential energy corresponding to the interaction between the spin magnetic moment
−→ℳ𝑠 and the

nuclear magnetic field : 𝐸𝑝 =−−→ℳ𝑠 ⋅
−→𝐵1

The difference 𝛥𝐸F between the energy of two electrons with a spin parallel and antiparallel to
−→𝐵1

is then 𝛥𝐸F = 2ℳ𝑠𝐵1 . Using previous expressions one finds: 𝛥𝐸F = 2 𝑒
𝑚𝑒

ħ𝐵1 = 2 𝑒
𝑚𝑒

ħ𝜇0𝑒𝛼𝑐
4𝜋𝑟21

which writes

𝛥𝐸F =−4𝛼2𝐸1 hence 𝛥𝐸HF =−3.72𝑚𝑒
𝑚𝑝

4𝛼2𝐸1.

The wavelength of the photon corresponding to this transition is then ℎ𝑐
𝜆HF =𝛥𝐸HF =−3.72.𝑚𝑒

𝑚𝑝
4𝛼2𝐸1 hence

𝜆HF =− ℎ𝑐
3.72.𝑚𝑒

𝑚𝑝 4𝛼
2𝐸1

whose value is 𝜆HF = 21 cm .

Marker Sheme

A.5.1 : Expression for the potential energy 0.1
A.5.2 : Expression for 𝛥𝐸F 0.1
A.5.3 : Expression for 𝛥𝐸HF in term of 𝛼 0.1
A.5.4 : Expression for 𝜆HF 0.1
A.5.5 : Numerical value for 𝜆HF 0.1

Part B - Rotation curves of galaxies
Data

• Kiloparsec: 1kpc= 3.09×1019m
• Solar mass : 1M⊙ = 1.99×1030 kg
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We consider a spherical galaxy centered around a fixed point 𝑂. At any point 𝑃 , let 𝜌 = 𝜌(𝑃) be the
volumetric mass density and 𝜑 = 𝜑(𝑃) the associated gravitational potential (i.e. potential energy per
unit mass). Both 𝜌 and 𝜑 depend only on 𝑟 = ‖

−−→𝑂𝑃‖. The motion of a mass𝑚 located at 𝑃 , due to the field
𝜑, is restricted to a plane containing 𝑂.

B.1 In the case of a circular orbit, determine the velocity 𝑣𝑐 of an object on a circular
orbit passing through 𝑃 in terms of 𝑟 and 𝑑𝜑

𝑑𝑟 .
0.2pt

SOLUTION:

The force created by the potential is
−→𝐹 = −−→∇(𝑚𝜑(𝑟)) = −𝑚 𝑑𝜑

𝑑𝑟
−→𝑢𝑟 . Newton's second law for a circular orbit

then gives𝑚 𝑣2𝑐
𝑟 =𝑚 𝑑𝜑

𝑑𝑟 hence 𝑣𝑐 =𝑟 𝑑𝜑𝑑𝑟 .

SOLUTION:

B.1.1 : Using Newton's second law 0.1
B.1.2 : Expression for the velocity. 0.1

Fig. 1(A) is a picture of the spiral galaxy NGC 6946 in the visible band (from the 0.8m Schulman Telescope
at the Mount Lemmon Sky Center in Arizona). The little ellipses in Fig. 1(B) show experimental measure-
ments of 𝑣𝑐 for this galaxy. The central region (𝑟 < 1kpc) is named the bulge. In this region, the mass
distribution is roughly homogeneous. The red curve is a prediction for 𝑣𝑐 if the system were homoge-
neous in the bulge and keplerian (𝜑(𝑟) = −𝛽/𝑟 with 𝛽 > 0) outside it, i.e. considering that the total mass
of the galaxy is concentrated in the bulge.

Fig. 1: NGC 6946 galaxy: Picture (A) and rotation curve (B).

B.2 Deduce the mass 𝑀𝑏of the bulge of NGC 6946 from the red rotation curve in
Fig. 1(B), in solar mass units.

0.5pt

SOLUTION:

Either by Gauss's theorem 4𝜋𝑟2𝑔(𝑟) = −4𝜋𝐺𝑀int(𝑟) , then one gets 𝑔(𝑟) = 𝐺𝑀int(𝑟)/𝑟2:::::::::::::::::
𝑔(𝑟) = −𝐺𝑀int(𝑟)/𝑟2.

or one knows the law 𝑔(𝑟) = 𝐺𝑀/𝑟2
:::::::::::::
𝑔(𝑟) = −𝐺𝑀/𝑟2

:
and intuits that one can use the interior mass
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𝑔(𝑟) = 𝐺𝑀int(𝑟)/𝑟2 :::::::::::::::::
𝑔(𝑟) = −𝐺𝑀int(𝑟)/𝑟2

If there is almost no more mass after the bulge radius 𝑟𝑏

then if 𝑟 > 𝑟𝑏,𝑀int(𝑟) =𝑀𝑏 and �⃗�(𝑟 > 𝑟𝑏) = −𝐺𝑀𝑏
𝑟2 �⃗�𝑟 . But �⃗� = −𝑑𝜑

𝑑𝑟 �⃗�𝑟 .

This gives 𝑣𝑐(𝑟 > 𝑟𝑏) =𝐺𝑀𝑏
𝑟 .

One can then deduce that if the velocity is given only by the bulge, at a given distance 𝑅 we
must have 𝑀𝑏 = 𝑣2𝑐𝑅/𝐺 . On the red curve we can read 𝑣𝑐 = 20 km ⋅ s−1 at 𝑅 = 10 kpc hence

𝑀𝑏 = 𝑣2𝑐𝑅
𝐺 ≃ 4.108×3.1020

6,7.10−11 ≃ 1,8.1039 kg so that 𝑀𝑏 ≃ 9.108𝑀⊙ .

Marker Scheme

B.2.1 : 𝑔(𝑟) = 𝐺𝑀int(𝑟)/𝑟2 :::::::::::::::::
𝑔(𝑟) = −𝐺𝑀int(𝑟)/𝑟2:via Gauss'

Theorem or another method resulting in an equivalent
result.

0.1

B.2.2 : Expression for �⃗�(𝑟 > 𝑟𝑏) 0.1
B.2.3 : Expression for𝑀𝑏 0.1
B.2.4 : Taking the right value of 𝑣𝑐 in the figure 0.1
B.2.5 : Numerical value for𝑀𝑏 with a tolerance of ±25% 0.1

Comparing the keplerian model and the experimental data makes astronomers confident that part of
the mass is invisible in the picture. They thus suppose that the galaxy's actual mass density is given by

𝜌𝑚(𝑟) =
𝐶𝑚

𝑟2𝑚+𝑟2 (1)

where 𝐶𝑚 > 0 and 𝑟𝑚 > 0 are constants.

B.3 Show that the velocity profile 𝑣𝑐,𝑚(𝑟), corresponding to the mass density in Eq.

1, can be written 𝑣𝑐,𝑚(𝑟) =𝑘1−
𝑘2⋅arctan( 𝑟

𝑟𝑚 )
𝑟 . Express 𝑘1 and 𝑘2 in terms of 𝐶𝑚, 𝑟𝑚

and 𝐺 .
( Hints: 

𝑟

0

𝑥2
𝑎2+𝑥2𝑑𝑥 = 𝑟 −𝑎 arctan(𝑟/𝑎), and: arctan(𝑥) ≃ 𝑥−𝑥3/3 for 𝑥≪ 1. )

 
Simplify 𝑣𝑐,𝑚(𝑟) when 𝑟 ≪ 𝑟𝑚 and when 𝑟 ≫ 𝑟𝑚.
Show that if 𝑟 ≫ 𝑟𝑚, the mass𝑀𝑚(𝑟) embedded in a sphere of radius 𝑟 with the
mass density given by Eq. 1 simplifies and depends only on 𝐶𝑚 and 𝑟.
Estimate the mass of the galaxy NGC 6946 actually present in the picture in Fig.
1(A).

1.8pt

SOLUTION:

On the one hand, writing Gauss' theorem on a sphere of radius 𝑟 gives ∫−→𝑔(𝑟) ⋅−→𝑑𝑆 = 4𝜋𝑟2𝑔(𝑟) = −4𝜋𝐺𝑀int
and thus 𝑔(𝑟) = 𝐺𝑀int(𝑟)/𝑟2 :::::::::::::::::

𝑔(𝑟) = −𝐺𝑀int(𝑟)/𝑟2. As long as this final formula is given it doesn't matter the
method.

But, on the other hand𝑀int =∫𝑟
0 4𝜋𝑥2𝜌(𝑥)𝑑𝑥 = 4𝜋𝐶𝑚 𝑟 −𝑟𝑚 arctan ⒧ 𝑟

𝑟𝑚 ⒭ hence
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𝑔𝑚(𝑟) = − 4𝜋𝐶𝑚𝐺𝑟−𝑟𝑚 arctan⒧ 𝑟
𝑟𝑚 ⒭

𝑟2 (2)

But as −𝑚 𝑣2𝑐,𝑚
𝑟 =−𝑚𝑔𝑚(𝑟)::::::::::::::::

−𝑚 𝑣2𝑐,𝑚
𝑟 =𝑚𝑔𝑚(𝑟) we finally get 𝑣𝑐,𝑚 =√𝑟𝑔𝑚(𝑟) ::::::::::::::

𝑣𝑐,𝑚 =√−𝑟𝑔𝑚(𝑟):wich writes

𝑣𝑐,𝑚 =

⎷
4𝜋𝐶𝑚𝐺 𝑟 −𝑟𝑚 arctan ⒧ 𝑟

𝑟𝑚 ⒭
𝑟 (3)

One can then read 𝑘1 = 4𝜋𝐶𝑚𝐺 and 𝑘2 = 4𝜋𝐶𝑚𝐺𝑟𝑚
Two regime could be considered:

• if 𝑟 ≪ 𝑟𝑚 , a third order Taylor expansion of arctan gives 𝑣𝑐,𝑚 ≃ 4𝜋𝐶𝑚𝐺𝑟2
3𝑟2𝑚

,

• and if 𝑟 ≫ 𝑟𝑚 then arctan ⒧ 𝑟
𝑟𝑚 ⒭ ≃ 𝜋/2 and 𝑣𝑐,𝑚 ≃√4𝜋𝐶𝑚𝐺 .

The function 𝑣𝑐,𝑚(𝑟) is vanishing when 𝑟 → 0 and is asymptotically constant with value √4𝜋𝐶𝑚𝐺 when
𝑟 →+∞ : this corresponds to the observational curve for the galaxy considered (black circles on the right
part of figure 1(B). A natural interpretation for 𝑟𝑚 is the typical radius beyond which the circular velocity
is constant. On this picture one can read 𝑣𝑐 ≃ 160km ⋅ s−1 for the constant value of 𝑣𝑐,𝑚 after 𝑟𝑚, then one
can deduce 𝐶𝑚 = 𝑣2𝑐

4𝜋𝐺 ≃ (1,6.105)2
4𝜋×6.67.10−11 ≃ 3.1019 kg ⋅m−1. The mass embedded in a sphere of radius 𝑟 is given by

𝑀int =∫𝑟
0 4𝜋𝑥2𝜌𝑚(𝑥)𝑑𝑥 = 4𝜋𝐶𝑚 𝑟 −𝑟𝑚 arctan ⒧ 𝑟

𝑟𝑚 ⒭which reduces to𝑀int ≃ 4𝜋𝐶𝑚𝑟 if 𝑟 ≫ 𝑟𝑚 . In the picture we

have a radius 𝑅 = 9kpc = 2.27× 1020m of the galaxy, then a mass 𝑀inthefigure ≃ 4𝜋𝐶𝑚𝑅 ≃ 1041 kg≃ 1011M⊙ .
This mass corresponds to more than ten times the value of the mass actually visible in this picture : this
is the dark matter concept.

Marker Scheme

B.3.1 : 𝑔(𝑟) = 𝐺𝑀int(𝑟)/𝑟2 via Gauss' Theorem or another
method resulting in an equivalent result.

0.2

B.3.2 : Interior mass 0.3
B.3.3. : Expression for 𝑔(𝑟) 0.1
B.3.4 : Using Newton's second law 0.1
B.3.5 : Expression for 𝑘1 0.1
B.3.6 : Expression for 𝑘2 0.1
B.3.7 : Simplification for 𝑣𝑐 in the case 𝑟 ≪ 𝑟𝑚 0.2
B.3.8 : Simplification for 𝑣𝑐 in the case 𝑟 ≫ 𝑟𝑚 0.2
B.3.9 : Value of 𝐶𝑚 0.2
B.3.10 : Expression for𝑀𝑚 in the case 𝑟 ≫ 𝑟𝑚 0.2
B.3.11 : Mass in the figure (good if nearest power of ten) 0.1

Part C - Mass distribution in our galaxy
For a spiral galaxy, the model for Eq. 1 is modified and one usually considers the gravitational potential
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is given by 𝜑𝐺 (𝑟,𝑧) = 𝜑0 ln⒧
𝑟
𝑟0
⒭exp⎡

⎣
−⒧ 𝑧𝑧0

⒭
2⎤
⎦
, where 𝑧 is the distance to the galactic plane (defined by 𝑧 = 0

), and 𝑟 < 𝑟0 is now the axial radius and 𝜑0 > 0 a constant to be determined. 𝑟0 and 𝑧0 are constant values.

C.1 Find the equation of motion on 𝑧 for the vertical motion of a point mass 𝑚
in such a potential, assuming 𝑟 is constant. Show that, if 𝑟 < 𝑟0, the galactic
plane is a stable equilibrium state by giving the angular frequency 𝜔0 of small
oscillations around it.

0.5pt

SOLUTION:

The equation of motion is given by Newton's second law 𝑚−→𝑎 = −→𝐹 = −𝑚−→∇𝜑, projected on −→𝑢𝑧, it gives

𝑚�̈� = −𝑚 𝜕𝜑
𝜕𝑧 . Using the given potential we have �̈� = 2𝑧

𝑧20
𝜑0 ln ⒧ 𝑟𝑟0 ⒭exp−⒧

𝑧
𝑧0 ⒭

2
 . Near the galactic plane (

𝑧 = 0 ) the exponential is equal to 1 and can be simplified to give �̈� ≃ 2𝑧
𝑧20
𝜑0 ln ⒧ 𝑟𝑟0 ⒭ . If 𝑟 < 𝑟0 the ln is negative

and the equation ofmotion is of the form �̈� ≃ −𝜔2
0𝑧with 𝜔0 = 2𝜑0

𝑧20
|ln ⒧ 𝑟𝑟0 ⒭

| . This proves that 𝑧 is oscillating

around 𝑧 = 0 and that the motion is stable.

Marker Scheme

C.1.1 : Newton's second law, or equivalent method 0.1
C.1.2 : Projection on the z axis 0.1
C.1.3 : Equation of motion 0.1
C.1.4 : Equation near the galactic plane 0.1
C.1.5 : Expression for 𝜔0 0.1

From here on, we set 𝑧 = 0.

C.2 Identify the regime, either 𝑟 ≫ 𝑟𝑚or 𝑟 ≪ 𝑟𝑚, in which themodel of Eq. 1 recovers
a potential of the form 𝜑𝐺 (𝑟,0) with a suitable definition of 𝜑0.
Under this condition 𝑣𝑐(𝑟) no longer depends on 𝑟. Express it in terms of 𝜑0.

0.6pt

SOLUTION:

Using the density given by equation (1) in part B, we have obtained

𝑔𝑚(𝑟) = −
4𝜋𝐶𝑚𝐺 𝑟 −𝑟𝑚 arctan ⒧ 𝑟

𝑟𝑚 ⒭
𝑟2 (4)

Hence, considering 𝑟 ≫ 𝑟𝑚 , one can simplify this relation to 𝑔𝑚(𝑟) ≃ −4𝜋𝐶𝑚𝐺𝑟 . The gravitational potential

can be obtained by integration, we then have : 𝜑(𝑟) = +4𝜋𝐶𝑚𝐺 ln(𝑟)+cst . The constant can be found by

correctly choosing the origin of the potential. This potential corresponds to: 𝜑𝐺 (𝑟,𝑧 = 0) = 𝜑0 ln ⒧ 𝑟𝑟0 ⒭ with
𝜑0 =+4𝜋𝐶𝑚𝐺 . In that case, the equation of motion in the galactic plane gives −𝑚 𝑣2𝑐

𝑟 = −𝑚𝑔𝑚(𝑟) which
writes 𝑣𝑐 =√𝑟𝑔𝑚(𝑟) =√4𝜋𝐶𝑚𝐺 , so that 𝑣𝑐 =√𝜑0 .
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Marker Scheme

C2.1 : Condition for simplication 𝑟 ≫ 𝑟𝑚 0.1
C2.2 : Expression for 𝜑(𝑟) 0.2
C2.3 : Identification of 𝜑0 0.1
C2.4 : Newton's second law 0.1
C2.5 : Expression for 𝑣𝑐 0.1

Therefore, outside the bulge the velocity modulus 𝑣𝑐 does not depend on the distance to the galactic
center. We will use this fact, as astronomers do, to measure the galaxy's mass distribution from the
inside.

All galactic objects considered here for astronomical observations, such as stars or nebulae, are primarily
composed of hydrogen. Outside the bulge, we assume that they rotate on circular orbits around the
galactic center 𝐶 . 𝑆 is the sun's position and 𝐸 that of a given galactic object emitting in the hydrogen
spectrum. In the galactic plane, we consider a line of sight 𝑆𝐸 corresponding to the orientation of an
observation, on the unit vector 𝑢𝑣 (see Fig. 2).

Fig. 2: Geometry of the measurement

Let ℓ be the galactic longitude, measuring the angle between 𝑆𝐶 and the 𝑆𝐸. The sun's velocity on its
circular orbit of radius 𝑅⊙ = 8.00kpc is denoted −→𝑣⊙. A galactic object in 𝐸 orbits on another circle of radius
𝑅 at velocity −→𝑣𝐸. Using a Doppler effect on the previously studied 21cm line, one can obtain the relative
radial velocity 𝑣𝑟𝐸/𝑆 of the emitter 𝐸 with respect to the sun 𝑆 : it is the projection of ⃗𝑣𝐸 − ⃗𝑣⊙ on the line of
sight.

C.3 Determine 𝑣𝑟𝐸/𝑆 in terms of ℓ, 𝑅, 𝑅⊙ and 𝑣⊙. Then, express 𝑅 in terms of 𝑅⊙, 𝑣⊙,
ℓ and 𝑣𝑟𝐸/𝑆 .

0.7pt
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SOLUTION:

We have
−→𝑆𝑠 = 𝑣⊙ sin(𝛼) 𝑢𝑣 and

−→𝐸𝑒 = 𝑣𝐸 cos(𝛽) 𝑢𝑣 . In the right triangle 𝑆𝑠𝑆𝑣 the sum of angles gives

⒧−→𝑆𝑠,−−→𝑆𝑆𝑣⒭ = 𝜋

2 −𝛼, but, as ⃗𝑣⊙ is perpendicular to the radius 𝐶𝑆, we also have

⒧−→𝑆𝑠,−−→𝑆𝑆𝑣⒭ = 𝜋

2 −ℓ : then 𝛼 = ℓ.

On the other side, we have 𝐶𝑇 = 𝑅⊙ sin(ℓ) = 𝑅 sin(𝜋2 −𝛽), which gives cos(𝛽) = 𝑅⊙
𝑅 sin(ℓ) . Merging all of

these results and taking into account that 𝑣𝐸 = 𝑣⊙ and that ⃗𝑣𝑟𝐸/𝑆 =
−→𝐸𝑒−−→𝑆𝑠 we have 𝑣𝑟𝐸/𝑆 = 𝑣⊙ ⒧𝑅⊙𝑅 −1⒭sin(ℓ)

and finally 𝑅 = 𝑅⊙
1+ 𝑣𝑟𝐸/𝑆

𝑣⊙ sin(ℓ)
.

Marker Scheme

C3.1 : Expression for
−→𝑆𝑠 0.1

C3.2 : Expression for
−→𝐸𝑒 0.1

C3.3 : 𝛼 = ℓ 0.1
C3.4 : Expression for cos(𝛽) 0.1
C3.5 : Expression for 𝑣𝑟,𝐸/𝑆 0.2
C3.6 : Expression for 𝑅 0.1

Using a radio telescope, wemake observations in the plane of our galaxy toward a longitude ℓ = 30°. The
frequency band used contains the 21cm line, whose frequency is 𝑓0 = 1.42GHz. The results are reported
in Fig. 3.

Fig. 3: Electromagnetic signal as a function of the frequency shift, measured in the radio
frequency band at ℓ = 30° using EU-HOU RadioAstronomy

C.4 In our galaxy, 𝑣⊙ = 220km ⋅ s−1. Determine the values of the relative radial ve-
locity (with 3 significant digits) and the distance from the galactic center (with
2 significant digits) of the 3 sources observed in Fig. 3. Distances should be
expressed as multiples of 𝑅⊙.

0.6pt

SOLUTION:
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In Fig. 3 one can measure the 3 frequency shifts ( 𝑓 −𝑓0 ) corresponding to each peak : 𝛥𝑓1 = 0.03MHz ,
𝛥𝑓2 = 0.15MHz and 𝑓3 = 0.26MHz. One can then compute the relative Doppler velocity using 𝑣𝑟,𝑖 = 𝑐𝛥𝑓𝑖/𝑓0
, with 𝑓0 = 1420MHz one gets

• 𝑣𝑟,1 = 6.33 km ⋅ s−1

• 𝑣𝑟,2 = 31.7 km ⋅ s−1

• 𝑣𝑟,3 = 54.9 km ⋅ s−1

As peaks are placed on grid points, the tolerance in the value is due to fact that candidates could use
𝑐 = 3.00×108m/s in the place of the 9 digits given in the formulary.

The corresponding distances from the galactic center are then obtained using the relation 𝑅𝑖 = 𝑅⊙
1+ 𝑣𝑟,𝑖

𝑣⊙ sinℓ
,

with ℓ = 30° we obtain :

• 𝑅1 = 0.95𝑅⊙

• 𝑅2 = 0.78𝑅⊙

• 𝑅3 = 0.67𝑅⊙
Marker Scheme

C4.1 : Doppler formula for 𝑣𝑟 0.1
C4.2 : Getting the 3 numerical values for 𝛥𝑓 0.2

C4.3 : Numerical values of the 3 velocities (±0.01 km ⋅ s−1) 0.2
C4.4 : Numerical values of the 3 distances (±0.01𝑅⊙) 0.1

C.5 On the top view of our galaxy (in the answer box), indicate the positions of the
sources observed in Fig. 3.
What could be deduced from repeated measurements changing ℓ?

0.6pt

SOLUTION:

As indicated on the figure below, the right line of sight could be obtained geometrically (i.e. without
protractor) : using the 15° grid graduation one can going back from 30° from the perpendicular line to
CS, we then obtain a radius which perpendicular to the line of sight, in other words as sin(30°)=0.5 the
line of sight is passing by S and is tangenting the circle of radius CS/2.

Drawing the circles or radius , and , the line of sight with from we get 2 possible intersection for each
peak : a near one and a far one. We plot only the nearest for each source on the answer figure.
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The far intersections for each source is much further away and hence is likely less intense. Astronomers
could also use the variation in the radio signal when they slowly vary the longitude to determine the
right position of the actual source. A continuous variation of ℓ in the interval [0,2𝜋] makes hydrogen
sources appear in the galaxy, as the galaxy is essentially composed of hydrogen, one can trace its mass
distribution : i.e. the spiral structure.

Marker Scheme

C5.1 : Getting the right line of sight 0.1
C5.2 : Drawing for the 3 circles 0.2
C5.3 : Drawing for the 3 points 0.2
C5.4 : Deduction 0.1

Part D - Tully-Fisher relation and MOND theory
The flat external velocity curve of NGC 6946 in Fig. 1 is a common property of spiral galaxies, as can
be seen in Fig. 4 (left). Plotting the external constant velocity value 𝑣𝑐,∞ as a function of the measured
total mass𝑀tot of each galaxy gives an interesting correlation called the Tully-Fischer relation, see Fig. 4
(right).
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Fig. 4. Left: Rotation curves for typical spiral galaxies - Right: log10(𝑀tot) as a function of
log10(𝑣𝑐,∞) on linear scales. Colored dots correspond to different galaxies and different sur-
veys. The green line is the Tully-Fischer relation which is in very good agreement with the best
fit line of the data (in black).

D.1 Assuming that the radius 𝑅 of a galaxy doesn't depend on its mass, show that
the model of Eq. 1 (part B) gives a relation of the form𝑀tot = 𝜂𝑣𝛾𝑐,∞ where 𝛾 and
𝜂 should be specified.
Compare this expression to the Tully-Fischer relation by computing 𝛾𝑇𝐹.

0.4pt

SOLUTION:

We have obtained 𝑣2𝑐,∞ = 4𝜋𝐶𝑚𝐺 and for a galaxy of radius 𝑅 , we have𝑀tot ≃ 4𝜋𝐶𝑚𝑅. This gives 𝐶𝑚 = 𝑀tot
4𝜋𝑅

and 𝑣2𝑐,∞ = 4𝜋𝑀tot
4𝜋𝑅𝐺 . This relation is of the expected form𝑀tot = 𝜂𝑣𝛾𝑐,∞ with 𝛾 = 2 and 𝜂 = 𝑅/𝐺 . Analysing

the data we get the power law exponent of the Tully-Fisher relation as 𝛾𝑇𝐹 ≃ 12−9
2.6−1.8 = 3.75 : the dark

matter model from part B is not able to reproduce this law.

Marker Scheme

D1.1 : Recall for 𝑣𝑐,∞ 0.1
D1.2 : Expression for 𝜂 0.1
D1.3 : Expression for 𝛾 0.1
D1.4 : Numerical value for 𝛾𝑇𝐹 (correct if it is between 3.5
and 4)

0.1

In the extremely low acceleration regime, of the order of 𝑎0 = 10−10m ⋅ s−2, the MOdified Newtonian Dy-

namics (MOND) theory suggests that one can modify Newton's second law using
−→𝐹 = 𝑚𝜇⒧ 𝑎𝑎0

⒭−→𝑎 where

𝑎 = ‖−→𝑎‖ is the modulus of the acceleration and the 𝜇 function is defined by 𝜇(𝑥) = 𝑥
1+𝑥 .
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D.2 Using data for NGC 6946 in Fig. 1, estimate, within Newton's theory, the mod-
ulus of the acceleration 𝑎𝑚 of a mass in the outer regions of NGC 6946.

0.2pt

SOLUTION:

Considering that outer orbits are circular, the corresponding acceleration for a test mass𝑚 is radial and
given in newtonian theory by 𝑎𝑚 ≃ 𝑣2𝑐 /𝑅 . In the case of NGC 6946, the value of the velocity is roughly
constant and equal to 𝑣𝑐 = 160km ⋅ s−1 as far 𝑅 > 5 kpc. For this smallest distance from the center, the

acceleration is 𝑎𝑚 = (1.6.105)2
5.3.1019 ≃ 1.5×10−10m ⋅ s−2 , this value is the maximal acceleration to which as star is

submitted in the outer regions of this galaxy. It corresponds to the MOND regime.

Marker Scheme

D2.1 : Expression for 𝑎𝑚 0.1
D2.2 : Numerical value for 𝑎𝑚 (good nearest power of ten) 0.1

D.3 Let 𝑚 be a mass on a circular orbit of radius 𝑟 with velocity 𝑣𝑐,∞ in the gravity
field of a fixed mass𝑀 .
Within the MOND theory, with 𝑎 ≪𝑎0, determine the Tully-Fischer exponent.
Using data for NGC 6946 and/or Tully-Fischer law, calculate 𝑎0 to show that
MOND operates in the correct regime.

0.8pt

SOLUTION:

If 𝑥 = 𝑎/𝑎0 ≪ 1, then 𝜇(𝑥 ≪ 1) ≃ 𝑥 and MOND theory gives
−→𝐹 = 𝑚 𝑎

𝑎0
−→𝑎. Considering a gravitational inter-

action between𝑀 and𝑚 we then have for the radial component of the modified Newton's second Law
𝐺 𝑀

𝑟2𝑚=𝑚 𝑎2
𝑎0 . The radial acceleration on a circular orbit of radius 𝑟 is always given by 𝑎 = 𝑣2𝑐,∞/𝑟, the mod-

ified second law writes now 𝐺 𝑀
𝑟2 =

𝑣4𝑐,∞
𝑟2𝑎0 which gives 𝑣𝑐,∞ = (𝑎0𝐺𝑀)1/4 , and thus𝑀 = 1

𝑎0𝐺 𝑣
4
𝑐,∞. Considering

the notation from D.1, this is a power law relation with 𝛾MOND = 4 in accordance with the Tully-Fischer
relation.

For the NGC 6946 galaxy, we read 𝑣𝑐,∞ = 160km ⋅ s−1 thus log10 ⒧
𝑣𝑐,∞

1km⋅s−1 ⒭ = 2.2 and one can read the corre-

sponding total mass by the Tully-Fischer relation as log(𝑀tot/𝑀⊙) = 10.5 thus 𝑀tot = 2.1040,5 kg. One can
obtain similar numbers using experimental data on the curve of Fig. 4. Introducing these values in the

relation 𝑎0 = 𝑣4𝑐,∞
𝐺𝑀tot

it gives 𝑎0 = 1.5×10−10m ⋅ s−2 as expected.

Marker Scheme
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D3.1 : Considering the hypothesis 𝑎 ≪𝑎0 0.1
D3.2 : Newton's second law 0.1
D3.3 : Expression for 𝑣𝑐,∞ 0.1
D3.4 : Numerical value for 𝛾𝑀𝑂𝑁𝐷 0.1
D3.5 : Numerical value for log10(𝑣𝑐,∞/1km/s) 0.1
D3.6 : Numerical value for log10(𝑀) 0.1
D3.7 : Expression for 𝑎0 0.1
D3.8 : Numerical value for 𝑎0 (good if nearest power of ten) 0.1

D.4 Considering relevant cases, determine 𝑣𝑐(𝑟) for all values of 𝑟 in the MOND the-
ory in the case of a gravitational field due to a homogeneously distributedmass
𝑀 with radius 𝑅𝑏.

0.9pt

SOLUTION:

Taking the full formula for 𝜇, the modified second law with circular velocity 𝑣𝑐 at radius 𝑟 writes now

𝒢(𝑟)𝑚 = −𝑚
𝑣2𝑓
𝑎0𝑟

1+
𝑣2𝑓
𝑎0𝑟

𝑣2𝑓
𝑟 where 𝒢(𝑟) is the gravitational field of the homogeneous ball of mass 𝑀 and with

radius 𝑅𝑏. This field can be deduced from Gauss' theorem it is

𝒢(𝑟) =
⎧
⎨
⎩

−𝐺𝑀/𝑟2 if 𝑟 > 𝑅𝑏
−𝐺𝑀𝑟/𝑅3

𝑏 if 𝑟 ≤ 𝑅𝑏
(5)

Outside the ball : 𝑟 > 𝑅𝑏. After a small reorganisation, 𝑣𝑐 appears to be solution of the biquadratic equa-
tion 𝑣4𝑐 − 𝐺𝑀

𝑟 𝑣2𝑐 −𝑎0𝐺𝑀 = 0 . The positive root of this equation is

𝑣𝑐(𝑟) =

⎷
𝐺𝑀
2𝑟

⎛
⎝
1+1+ 4𝑎0𝑟2

𝐺𝑀
⎞
⎠

which is valid only if 𝑟 > 𝑅𝑏 (6)

When 𝑟 →∞, 𝑣𝑐 is asymptotically constant and 𝑀 → 𝑣4𝑐,∞
𝑎0𝐺 which is the Tully-Fisher relation. Inside the ball

: 𝑟 ≤ 𝑅𝑏. With a similar reorganisation, 𝑣𝑐 appears now to be solution of another biquadratic equation

which is 𝑣4𝑐 − 𝐺𝑀
𝑟 ⒧ 𝑟

𝑅𝑏 ⒭
3𝑣2𝑐 −𝑎0𝐺𝑀 ⒧ 𝑟

𝑅𝑏 ⒭
3 = 0 . The positive solution is now

𝑣𝑐(𝑟) =

⎷
𝐺𝑀
2𝑟 ⒧ 𝑟

𝑅𝑏
⒭
3⎡
⎣
1+1+ 4𝑎0𝑟2

𝐺𝑀 ⒧𝑅𝑏𝑟 ⒭
3⎤
⎦

which is valid only if 𝑟 ≤ 𝑅𝑏 (7)

When 𝑟 → 0, we recover 𝑣𝑐 →0 as in the experimental data.

Marker Scheme
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D4.1 : Modified second law 0.1
D4.2 : Gravitational field in the case 𝑟 > 𝑅𝑏 0.1
D4.3 : Gravitational field in the case 𝑟 < 𝑅𝑏 0.1
D4.4 : Bi-quadratic equation in the case 𝑟 > 𝑅𝑏 0.1
D4.5 : Expression for 𝑣𝑐 in the case 𝑟 > 𝑅𝑏 0.1
D4.6 : Behaviour in the limit 𝑟 →∞ 0.1
D4.7 : Bi-quadractic equation for 𝑟 < 𝑅𝑏 0.1
D4.8 : Expression for 𝑣𝑐 when 𝑟 < 𝑅𝑏 0.1
D4.9 : Behaviour when 𝑟 → 0 0.1
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Cox's Timepiece (10 points)
In 1765, British clockmaker James Cox invented a clock whose only source of energy is the fluctuations
in atmospheric pressure. Cox's clock used two vessels containing mercury. Changes in atmospheric
pressure caused mercury to move between the vessels, and the two vessels to move relative to each
other. This movement acted as an energy source for the actual clock.

We propose an analysis of this device. Throughout,
we assume that

• the Earth's gravitational field −→𝑔 = −𝑔−→𝑢𝑧 is uni-
form with 𝑔 = 9.8m ⋅ s−2 and −→𝑢𝑧 a unit vector;

• all liquids are incompressible and their density
is denoted 𝜌;

• no surface tension effects will be considered;
• the variations of atmospheric pressure with al-

titude are neglected;
• the surrounding temperature 𝑇a is uniform

and all transformations are isothermal.

Fig. 1. Artistic view of Cox's clock 1

Part A - Pulling on a submerged tube
We first consider a bath of water that occupies the semi-infinite space 𝑧 ≤ 0. The air above it is at a
pressure 𝑃a = 𝑃0. A cylindrical vertical tube of length 𝐻 = 1m, cross-sectional area 𝑆 = 10cm2 and mass
𝑚 = 0.5kg is dipped into the bath. The bottom end of the tube is open, and the top end of the tube is
closed. We denote ℎ the altitude of the top of the tube and 𝑧ℓ that of the water inside the tube. The
thickness of the tube walls is neglected.

a

−→𝑔

•

−→𝐹

𝐻

𝑧

−ℎ = 𝑧ℓ = 0

b

•

−→𝐹

𝑧

−0

−ℎ = 𝑧ℓ

c

•

−→𝐹

𝑧

−0

−𝑧ℓ
−ℎ

Fig. 2. Sketch of the tube in different configurations



Theory

Q2-2
English (Official)

We start from the situation where the tube in Fig. 2 contains no gas and its top is at the bath level: in
other words, ℎ = 0 and 𝑧ℓ = 0 (case a). The tube is then slowly lifted until its bottom end reaches the bath
level. The pulling force exerted on the tube is denoted

−→𝐹 =𝐹−→𝑢𝑧.

A.1 For the configuration shown in Fig. 2 (case b), express the pressure 𝑃w in the
water at the top of the tube. Also express the force

−→𝐹 necessary to maintain the
tube at this position. Expressions must be written in terms of 𝑃0, 𝜌, 𝑚, 𝑆, ℎ, 𝑔
and −→𝑢𝑧.

0.2pt

SOLUTION:

According to the hydrostatic law, one has

𝑃w = 𝑃a−𝜌𝑔ℎ = 𝑃0−𝜌𝑔ℎ

In the configuration shown in Fig. 2 (case b), the tube is submitted to three forces: its weight, the resul-
tant of the pressure forces and the force exerted by the operator. Thus, at equilibrium, one has

−→0=𝑚−→𝑔+⒧𝑃w−𝑃0⒭𝑆−→𝑢𝑧+
−→𝐹

which leads to

−→𝐹 =− 𝑚+𝜌𝑆ℎ−→𝑔 = 𝑚+𝜌𝑆ℎ𝑔−→𝑢𝑧

MARKING SCHEME:

Expression of 𝑃w (as a function of 𝑃a or 𝑃0) 0.1

Expression of
−→𝐹 0.1

Three experiments are performed. In each, the tube is lifted from the initial state shown in Fig. 2(a)
under the conditions specified in Table 1.

Experiment Liquid 𝑇a (°C) 𝜌 (kg ⋅m−3) 𝑃sat (Pa)
1 Water 20 1.00 × 103 2.34 × 103

2 Water 80 0.97 × 103 47.4 × 103

3 Water 99 0.96 × 103 99.8 × 103

Table 1. Experimental conditions and numerical values of physical quantities for each experiment

(𝑃sat designates the saturated vapour pressure of the pure fluid)

In each case, we study the evolution of the force 𝐹 that must be applied in order to maintain the tube
in equilibrium at an altitude ℎ, the external pressure being fixed at 𝑃a = 𝑃0 = 1.000×105Pa. Two different
behaviours are possible
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Behaviour A

0
ℎ

𝐹

𝐹0
|
𝐻

−𝐹max

Behaviour B

0
ℎ

𝐹

𝐹0
|
𝐻

−𝐹max

|
ℎ⋆

A.2 For each experiment, complete the table in the answer sheet to indicate the ex-
pected behaviour and the numerical values for𝐹max and forℎ⋆ (when pertinent),
where 𝐹max and ℎ⋆ are defined in the figures illustrating the two behaviours.

0.8pt

SOLUTION:

Physically, the altitude ℎ⋆ corresponds to the threshold at which saturated vapour appears in the tube.
This altitude can be expressed using the hydrostatic law, writing

𝑃w = 𝑃0−𝜌𝑔ℎ⋆ = 𝑃sat ⒧𝑇a⒭ .

One can find

ℎ⋆ = 𝑃0−𝑃sat ⒧𝑇a⒭
𝜌𝑔 ,

and calculate its numerical value for each experiment. If the value obtained is higher than 𝐻 , behaviour
A is observed; otherwise, behaviour B is observed. According to the previous question, the force 𝐹 is
related to ℎ by

𝐹 = 𝑚+𝜌𝑆ℎ𝑔

which leads to

𝐹max =
⎧⎪
⎨
⎪⎩

𝑚+𝜌𝑆𝐻𝑔 for behaviour A

𝑚+𝜌𝑆ℎ⋆𝑔 for behaviour B

One can deduce the following predictions:

Experiment Behaviour (A or B ?) ℎ⋆ (cm) 𝐹max (N)
1 A 14.7
2 A 14.4
3 B 2.1 5.1
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MARKING SCHEME:

All behaviours are correct (*all or nothing*): A/A/B 0.2
Experiment 1: Numerical value of 𝐹max in 14.6,15 (N) 0.1
Experiment 2: Numerical value of 𝐹max in 14,14.5 (N) 0.1
Experiment 3: Numerical value of ℎ⋆ in 2,2.2 (cm) (0.1 pt if
only literal expression is correct)

0.2

Experiment 3: Numerical value of 𝐹max in 5,5.2 (N) (0.1 pt if
only literal expression is correct)

0.2

When we replace the water with liquid mercury (whose properties are given below), behaviour B is ob-
served.

Liquid 𝑇a (°C) 𝜌 (kg ⋅m−3) 𝑃sat (Pa)
Mercury 20 13.5 × 103 0.163

A.3 Express the relative error, denoted 𝜀, committed when we evaluate the maximal
force 𝐹max neglecting 𝑃sat compared to 𝑃0. Give the numerical value of 𝜀.

0.3pt

SOLUTION:

For behaviour B, the expression of 𝐹max previously obtained can be reformulated as

𝐹max =𝑚𝑔+⒧𝑃0−𝑃sat⒭𝑆

Neglecting the saturated vapour pressure compared to the atmospheric pressure, one obtains

𝐹max ≃𝑚𝑔+𝑃0 𝑆

Thus, the relative error 𝜀 is given by

𝜀 = 𝑃sat
𝑃0+𝑚𝑔/𝑆 ≃ 1.6×10−6

MARKING SCHEME:

Literal expression of 𝜀 (with or without 𝑃sat in denominator) 0.2
Numerical value of 𝜀 in 1,2×10−6 0.1

Part B - Two-part barometric tube
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From now on, we work with mercury (density
𝜌 = 13.5 × 103 kg ⋅m−3) at the ambient tempera-
ture 𝑇a = 20°C and we take 𝑃sat = 0.

Let us consider a tube with a reservoir on top,
modeled as two superposed cylinders of differ-
ent dimensions, as shown in Fig. 3.

• the bottom part (still called the tube)
has cross-sectional area 𝑆t and height
𝐻t = 80cm ;

• the top part (called the bulb) has
cross-sectional area 𝑆b > 𝑆t and height
𝐻b = 20cm.

This two-part tube is dipped into a semi-infinite
liquid bath.

•

𝑧

−0

−ℎt

𝐻t = 80cm

𝐻b = 20cm−𝑧ℓ

−→𝑔−→𝐹

Fig. 3. Sketch of the two-part barometric tube

As in Part A, the system is prepared such that the tube contains no air. We identify the vertical position
of the tube by the altitude ℎt of the junction between the tube and the bulb. The height of the column
of mercury is again denoted 𝑧ℓ. The force

−→𝐹 that must be exerted to maintain the tube in equilibrium in
the configuration shown in Fig. 3 can now be written as

−→𝐹 = ⒧𝑚tb+𝑚add⒭𝑔−→𝑢𝑧 (1)

where 𝑚tb is the total mass of the two-part tube (when empty of mercury).

B.1 On the answer sheet, color the area corresponding to the volume of liquid mer-
cury that is responsible for the term 𝑚add appearing in equation (1).

0.3pt

SOLUTION:

By adapting the reasoning used at part A, one can deduce that the mass 𝑚add corresponds to the liquid
mass in the two-part tube which is above the outside surface of the liquid bath, as shown below.

𝑧

−0

−𝑧ℓ 𝑚add
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MARKING SCHEME:

Coloring of the correct area (0.1 pt only if a correct
expression of 𝑚add is provided but the colored area is
incorrect)

0.3

The mass 𝑚add depends both on the height ℎt and the atmospheric pressure 𝑃a. For the next question,
assume that the atmospheric pressure is fixed at 𝑃a = 𝑃0 = 1.000×105Pa. Starting from the situation where
the system is completely submerged, the tube is slowly lifted until its base is flush with the liquid bath.

B.2 Sketch the evolution of the mass 𝑚add as a function of ℎt for ℎt ∈ −𝐻b,𝐻t. On
the graph, provide the expression for the slopes of the different segments, as
well as the ℎt analytical value of any angular points, in terms of 𝑃0, 𝜌, 𝑔, 𝑆b, 𝑆t,
𝐻b and 𝐻t.

1.4pt

SOLUTION:

Using the same reasoning as in question A2, one can determine that saturated vapour appears in the
two-part barometric tube when the altitude of the liquid column in the tube reaches the critical value

𝑧⋆ℓ =
𝑃0−𝑃sat
𝜌𝑔 = 𝑃0

𝜌𝑔 = 76cm

taking 𝑃sat = 0. Combining this result with that of the previous question, one obtains the following graph:

ℎt

𝑚add

0
|

−𝐻b

|
𝑧⋆ℓ −𝐻b
(= 56cm)

|
𝑧⋆ℓ

(= 76cm)

|
𝐻t

slope : 𝜌𝑆b

slope : 𝜌𝑆t
slope : −𝜌 ⒧𝑆b−𝑆t⒭

slope : 0

MARKING SCHEME:
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Qualitative aspect: Graph with 4 straight pieces (0.1pt only if
there are 3 pieces; 0 else)

0.2

Qualitative aspect: For the 1st & 2nd pieces, the slopes are
positive *and* the slope of 2nd piece is less than that of 1st
(*all or nothing*)

0.2

Qualitative aspect: The 3rd piece has a negative slope 0.2
Qualitative aspect: The 4th piece has a null slope 0.2
Expressions of the two first slopes (*all or nothing*) 0.1
Expression of the negative slope 0.2
ℎt analytical values of the 3 intermediate angular points
(0.1pt per value)

0.3

As the system is lifted while 𝑃a = 𝑃0 = 105Pa, we stop when the free surface of the liquid is in the middle
of the bulb. The value of ℎt is fixed and then we observe variations in the mass 𝑚add due to variations in
the atmospheric pressure described by

𝑃a (𝑡) = 𝑃0+𝑃1 (𝑡) (2)

where 𝑃0 designates the average value and 𝑃1 is a perturbative term. We model 𝑃1 by a periodic triangular
function of amplitude 𝐴 = 5×102Pa and period 𝜏1 of 1 week.

0 𝑡

𝑃1 (𝑡)

−−𝐴

−𝐴
𝜏1

Fig. 4. Simplified model of the perturbative term 𝑃1 (𝑡)

B.3 Given that 𝑆t = 5cm2 and 𝑆b = 200cm2, express the amplitude 𝛥𝑚add of the varia-
tions of the mass 𝑚add over time, then give its numerical value. Assume that the
liquid surface always stays in the bulb.

0.3pt

SOLUTION:

By neglecting the saturated vapour pressure in the bulb, the altitude 𝑧ℓ of the free surface of the liquid
in the tube is given by

𝑧ℓ (𝑡) =
𝑃a (𝑡)
𝜌𝑔 = 𝑃0

𝜌𝑔 + 𝑃1 (𝑡)
𝜌𝑔 = ℎt+

𝐻b
2

mean value 𝑧ℓ,0

+ 𝑃1 (𝑡)
𝜌𝑔

perturbative term

which leads to
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𝑚add (𝑡) = 𝜌𝑆tℎt+𝑆b ⒧𝑧ℓ (𝑡)−ℎt⒭  = 𝜌 𝑆tℎt+𝑆b ⒧𝑧ℓ,0−ℎt⒭+
𝑆b𝑃1 (𝑡)

𝑔

The first term gives the mean value of the mass 𝑚add (𝑡), while the last term characterizes its temporal
variations. One can deduce the magnitude

𝛥𝑚add =
𝑆b𝐴
𝑔 ≃ 1kg

MARKING SCHEME:

Literal expression of 𝛥𝑚add 0.2
Numerical value *with unit*, in 1kg,1.1kg 0.1

Part C - Cox's timepiece
The real mechanism developed by Cox is complex (Fig. 5). We study a simplified version, depicted in Fig.
6, and described below

• a cylindrical bottom cistern containing a mercury bath ;

• a two-part barometric tube identical to that studied in part B, which is still completely emptied of
any air, is dipped into the bath ;

• the cistern and the two-part tube are each suspended by a cable. Both cables (assumed to be
inextensible and of negligible mass) pass through a system of ideal pullies and finish attached to
either side of the same mass 𝑀 , which can slide on a horizontal surface ;

• the total volume of liquid mercury contained in the system is 𝑉ℓ = 5L.

The height, cross-section and masses of each part are given in Table 2. The position of mass 𝑀 is ref-
erenced by the coordinate 𝑥 of its center of mass. We consider solid friction between the horizontal
support and the mass 𝑀 , without distinction between static and dynamic coefficients; the magnitude of
this force when sliding occurs is denoted 𝐹s.
Two stops limit the displacement of the mass 𝑀 such that −𝑋 ≤ 𝑥 ≤𝑋 (with 𝑋 > 0). Assume that the value
of 𝑋 guarantees that

• the bottom of the two-part tube never touches the bottom of the cistern nor comes out of the liquid
bath;

• the altitude 𝑧ℓ of the mercury column is always in the upper bulb.



Theory

Q2-9
English (Official)

Fig. 5. Real Cox's timepiece 2 (without
mercury)

𝑀

𝑥
𝑥
|
𝑋

|
−𝑋

••

• •

• •

••

•−→𝑔

liquid mercury

1

2

2′

Fig. 6. Sketch of the system modeling the timepiece

Reference Name Height Cross section area Empty mass

1 cistern 𝐻c = 30cm 𝑆c = 210cm2 𝑚c

2 tubular part of the
barometric tube

𝐻t = 80cm 𝑆t = 5cm2
total mass of

the barometric
tube : 𝑚tb2′ bulb of the

barometric tube
𝐻b = 20cm 𝑆b = 200cm2

Table 2. Dimensions and notations for the model system

The system evolves in contact with the atmosphere, whose pressure fluctuates as in Fig. 4 (still with
amplitude 𝐴 = 5×102Pa and period 𝜏1 = 1week). At the start 𝑡 = 0, the mass 𝑀 is at rest at 𝑥 = 0 and the
tensions exerted by the two cables on either side of the mass 𝑀 are in balance while 𝑃1 (0) = 0. We define

𝜉 = 𝑆b+𝑆c−𝑆t
𝑆b 𝑆c

𝐹s
𝐴 ≃ 𝑆b+𝑆c

𝑆b 𝑆c
𝐹s
𝐴 (3)

where the last expression uses that 𝑆t ≪𝑆b, 𝑆c (which we will assume is valid until the end of the problem).

C.1 Determine the threshold 𝜉⋆ such that𝑀 remains indefinitely at rest when 𝜉 > 𝜉⋆. 1pt
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SOLUTION:

Consider the case in which the mass 𝑀 stays at rest at 𝑥 = 0. At the start 𝑡 = 0, the tensions exerted
by the two cables on either side of the mass 𝑀 are in balance: the force 𝐹0 required to suspend the
barometric tube (with the fluid it contains) is equal to that required to suspend the cistern (with the fluid
it contains). When the atmospheric pressure increases from 𝑃a = 𝑃0, the fluid rises in the barometric tube
while it descends in the cistern. As a result, the added mass in the tube increases, while the added mass
in the cistern decreases. We denote 𝑚1,tb and 𝑚1,c the (algebraic) variation of the apparent masses of
each container. Thus, the tensions exerted by the two cables can be written:

• 𝐹0+𝑚1,tb𝑔−→𝑢𝑥 for the cable on the right, suspending the tube;

• −𝐹0+𝑚1,c𝑔−→𝑢𝑥 for the cable on the left, suspending the cistern.

According to the principle of mass conservation, one can immediately state that 𝑚1,tb = −𝑚1,c. Subse-
quently, we choose to keep only 𝑚1,c in the expressions (but all the calculations can be carried out while
keeping 𝑚1,tb).

𝑀

𝑥|
0

••

•
•

•
−𝐹0−→𝑢𝑥 • •

•
•

•
+𝐹0−→𝑢𝑥

•

𝑀

𝑥

•−→𝑅t

|
0

••

•
•

•
− ⒧𝐹0+𝑚1,c𝑔⒭ −→𝑢𝑥 • •

•
•

•
+ ⒧𝐹0+𝑚1,tb𝑔⒭ −→𝑢𝑥

•

−→𝑔

𝛥𝑧ℓ,0 =
𝑃0
𝜌𝑔

𝛿b

𝛿c

𝛥𝑧ℓ (𝑡) =
𝑃a
𝜌𝑔 (𝑡)

When 𝑃a = 𝑃0 When 𝑃a increases

The friction force between the support and the mass 𝑀 needed to maintain the equilibrium is therefore
given by
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−→𝑅t =−𝐹0−𝑚1,c𝑔−→𝑢𝑥 +𝐹0+𝑚1,c𝑔−→𝑢𝑥 = 2𝑚1,c𝑔−→𝑢𝑥

In addition, according to the sketch above (where displacements 𝛿b and 𝛿c are algebraic), we have
𝑚1,c = 𝜌𝑆c𝛿c.
It is now necessary to determine 𝛿c. One can use

• the hydrostatic law : 𝛿b−𝛿c =
𝑃1
𝜌𝑔

• the conservation of the total volume/mass of mercury : 𝑆b𝛿b = −𝑆c−𝑆t𝛿c ≃ −𝑆c𝛿c (given that
𝑆t ≪𝑆b,𝑆c)

Solving the system formed by those equations, one finds

𝛿c =− 𝑆b
𝑆b+𝑆c−𝑆t

𝑃1
𝜌𝑔 ≃− 𝑆b

𝑆b+𝑆c
𝑃1
𝜌𝑔

which finally yields

−→𝑅t =− 2𝑆b 𝑆c
𝑆b+𝑆c−𝑆t

𝑃1−→𝑢𝑥 ≃− 2𝑆b 𝑆c
𝑆b+𝑆c

𝑃1−→𝑢𝑥

With the triangular model for 𝑃1 (𝑡), the maximum static friction force is obtained when 𝑃1 = ±𝐴. There-
fore, according to the Coulomb's law of friction, the mass 𝑀 stays at rest if and only if

2𝑆b 𝑆c
𝑆b+𝑆c−𝑆t

𝐴 < 𝐹s

This inequality can be rewritten as

2 < 𝑆b+𝑆c−𝑆t
𝑆b 𝑆c

𝐹s
𝐴 = 𝜉

which allows us to identify

𝜉⋆ = 2

MARKING SCHEME:
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Introduction of geometric parameters to locate the positions
of the fluid surfaces in each vessel

0.1

Expression of mass or volume variation of fluid in at least
one of the vessels, in terms of those geometric parameters
(with or without using 𝑆t ≪𝑆b,𝑆c)

0.1

Physical law: Conservation of the total mass/volume 0.2
Physical law: Expression of barometric difference of heights
between the two surfaces

0.2

Physical law: Expression of the friction force at equilibrium
(with or without using 𝑆t ≪𝑆b,𝑆c)

0.1

Physical law: Use of Coulomb's law in sticky situation 0.1
Conclusion: Obtaining 𝜉⋆ 0.2

For the next question only, suppose that the mass 𝑀 is temporarily blocked at 𝑥 = 𝑋 .

C.2 Give an expression for the total tension force
−→𝑇 = 𝑇 −→𝑢𝑥 acting on the mass 𝑀

due to the tension in two cables at this position, when 𝑃1 = 0, in terms of 𝜌, 𝑔, 𝑋
and pertinent cross-sections.

1pt

SOLUTION:

Let us compare the configurations of the system when 𝑥 = 0 and when 𝑥 = 𝑋 .
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𝑀

𝑥|
0

••

•
•

•
−𝐹0−→𝑢𝑥 • •

•
•

•
+𝐹0−→𝑢𝑥

•

𝑀

𝑥|
0
|
𝑋

••

•
•

•
− ⒧𝐹0+𝑚1,c𝑔⒭−→𝑢𝑥 • •

•
•

•
+ ⒧𝐹0+𝑚1,tb𝑔⒭ −→𝑢𝑥

•

−→𝑔

𝛥𝑧ℓ,0 =
𝑃0
𝜌𝑔

𝛿b

−𝑋

𝛿c

𝑋

𝛥𝑧ℓ,0

At 𝑥 = 0 At 𝑥 = 𝑋

Assuming that the atmospheric pressure is temporarily fixed at 𝑃0, the difference 𝛥𝑧ℓ of fluid heights be-
tween the cistern and the barometric tube is the same in both configurations. It is given by 𝛥𝑧ℓ,0 = 𝑃0/𝜌𝑔
and leads to

𝛿b = 𝛿c

The total volume/mass of mercury is also conserved. This conservation can be expressed by the equation

⒧𝑆c−𝑆t⒭𝛿c−⒧𝑆c+𝑆t⒭ 𝑋
volume of mercury

algebraically won by the cistern

+ 𝑆b ⒧𝛿b+𝑋⒭
volume of mercury

algebraically won by the bulb

= 0

which can be reformulated as

𝑆b𝛿b+⒧𝑆c−𝑆t⒭ 𝛿c = ⒧𝑆c−𝑆b+𝑆t⒭ 𝑋

One obtains
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𝛿b = 𝛿c =
𝑆c−𝑆b+𝑆t
𝑆b+𝑆c−𝑆t

𝑋

Thus, the supplementary added mass in the cistern is given by

𝑚1,c = 𝜌𝑆c ⒧𝛿c−𝑋⒭ = −𝜌 2𝑆c ⒧𝑆b−𝑆t⒭𝑆c+𝑆b−𝑆t
𝑋 ≃− 2𝑆b 𝑆c

𝑆b+𝑆c
𝜌𝑋

and, as explained in C1, we still have 𝑚1,tb =−𝑚1,c.

Finally, according to the sketch, one obtain the resultant tension force
−→𝑇 = ⒧𝑚1,tb−𝑚1,c⒭𝑔−→𝑢𝑥 =−2𝑚1,c𝑔−→𝑢𝑥,

that is

−→𝑇 = 4𝑆c ⒧𝑆b−𝑆t⒭
𝑆b+𝑆c−𝑆t

𝜌𝑔𝑋 −→𝑢𝑥 ≃
4𝑆b 𝑆c
𝑆b+𝑆c

𝜌𝑔𝑋 −→𝑢𝑥

MARKING SCHEME:

Introduction of geometric parameters to locate the positions
of the fluid surfaces in each vessel

0.1

Expressions of mass or volume variations of fluid in one of
the vessels in terms of 𝑋 and those geometric parameters
(with or without using 𝑆t ≪𝑆b,𝑆c)

0.3

Physical law: Conservation of the total mass/volume 0.2
Physical law: Expression of barometric difference of heights
between the two surfaces

0.2

Expression of the total tension force
−→𝑇 (with or without using

𝑆t ≪𝑆b,𝑆c)
0.2

When 𝜉 < 𝜉⋆, starting again from 𝑥 = 0 and 𝑃1 = 0, two different behaviours can be observed for 𝑡 ≥ 0. To
distinguish them, we need to introduce another parameter

𝜆 = 2⒧𝑆b−𝑆t⒭
𝑆b

𝜌𝑔𝑋
𝐴 ≃ 2𝜌𝑔𝑋

𝐴 (4)

C.3 Complete the table in the answer sheet to indicate the condition under which
each regime is obtained. Conditions must be expressed as inequalities on 𝜉
and/or 𝜆. In addition, sketch the variations of 𝑥(𝑡)/𝑋 for 𝑡 ∈ 0, 3𝜏1 that are con-
sistent with the variations of 𝑃1 (𝑡)/𝐴 already present. Specification of remarkable
points coordinates is not required.

2pt

SOLUTION:

When 𝜉 < 𝜉⋆, there necessarily exists an instant from which the mass 𝑀 begins to sweep on the right.
From there, the mass 𝑀 is continuously accelerated by the total tension

−→𝑇 until it is blocked by the stop
at 𝑥 = 𝑋 . According to Fig. 5, one can assume that 𝑋 is of the order of a few centimeters, so the time
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needed to switch between the two positions 𝑥 = 0 and 𝑥 = 𝑋 can reasonably be neglected in front of the
period 𝜏1.

Once blocked at 𝑥 = 𝑋 , the resultant tension
−→𝑇 can be determined by generalizing the reasoning carried

out in the two previous questions. One obtains the following equations:

• hydrostatic law : 𝛿b−𝛿c =
𝑃1
𝜌𝑔

• conservation of the volume/mass : 𝑆b𝛿b+⒧𝑆c−𝑆t⒭𝛿c = ⒧𝑆c−𝑆b+𝑆t⒭𝑋
The resolution of this system gives

𝛿c =
𝑆c−𝑆b+𝑆t
𝑆b+𝑆c−𝑆t

𝑋 − 𝑆b
𝑆b+𝑆c−𝑆t

𝑃1
𝜌𝑔

from which we deduce the perturbative added mass

𝑚1,c = 𝜌𝑆c ⒧𝛿c−𝑋⒭ = −𝜌2𝑆c ⒧𝑆b−𝑆t⒭𝑆b+𝑆c−𝑆t
𝑋 + 𝑆b 𝑆c

𝑆b+𝑆c−𝑆t
𝑃1
𝜌𝑔 = −𝑚1,tb

Then finally

−→𝑇 =−2𝑚1,c𝑔−→𝑢𝑥 = 4𝑆c ⒧𝑆b−𝑆t⒭𝑆b+𝑆c−𝑆t
𝜌𝑔𝑋 + 2𝑆b 𝑆c

𝑆b+𝑆c−𝑆t
𝑃1 −→𝑢𝑥

According to Coulomb's law of friction, the mass 𝑀 will stay at rest at the position 𝑥 = 𝑋 while
−→𝑇 ⋅−→𝑢𝑥 >−𝐹s.

With the model adopted for 𝑃1 (𝑡), this condition is always satisfied if

4𝑆c ⒧𝑆b−𝑆t⒭
𝑆b+𝑆c−𝑆t

𝜌𝑔𝑋 − 2𝑆b 𝑆c
𝑆b+𝑆c−𝑆t

𝐴 >−𝐹𝑠

Hence, using the parameters 𝜉 and 𝜆, one can identify the two possible regimes :

• Regime 1 : 𝜉+2𝜆 > 2 (once at 𝑥 = 𝑋 , the mass 𝑀 stays indefinitely at rest)

0 𝑡

𝑥 (𝑡)/𝑋

−−1

−1

|
𝜏1

|
2𝜏1

|
3𝜏1

• Regime 2 : 𝜉 +2𝜆 < 2 (once at 𝑥 = 𝑋 , the mass 𝑀 will periodically sweep between the two
stops)
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0 𝑡

𝑥 (𝑡)/𝑋

−−1

−1

|
𝜏1

|
2𝜏1

|
3𝜏1

MARKING SCHEME:

Expression for
−→𝑇 in the general case, containing both 𝑃1and

𝑋 terms.
0.2

At least one inequality is correct (without considering strict
or large)

0.2

Both inequalities are correct (without considering strict or
large)

0.1

Global appearance of *both* graphs: one seems to show an
aperiodic behaviour, the other a periodic behaviour (*all or
nothing*)

0.2

Global appearance: each graph is in accordance with the
correct sign of obtained inequality (focus on symbols > / <,
without considering if the inequality is strict or large)

0.2

Either graph 1 or 2 shows: A first switch from 𝑥 = 0 to 𝑥 = 𝑋
that begins somewhere in the interval 𝑡 ∈ ⒧0, 𝜏14 

0.2

Either graph 1 or 2 shows: The switch is instantaneous 0.2
Graph in aperiodic regime: 𝑥 = 𝑋 for all times after the first
switch

0.1

Graph in periodic regime: the behaviour is periodic with
period 𝜏1(except for the first switch)

0.1

Graph in periodic regime: the positive and negative parts of
the graph are similar

0.2

Graph in periodic regime: 𝑥(𝑡)/𝑋 is described by a
rectangular function, of magnitude 1 and duty cycle 50% in
steady state

0.2

Graph in periodic regime: the first step at 𝑥 = 𝑋 last longer
than others

0.1

In the real Cox's timepiece, energy provided by the mechanism is stored using a system of ratchets
and used to raise a counterweight, like in a traditional clock. In the simplified model studied here, the
energy recovered by the clock corresponds to the energy dissipated by the friction force exerted by the
horizontal surface on the mass 𝑀 . From now on, we assume that the system is dimensioned such that
to work in the regime that allows the clock to recuperate energy. We also assume that the permanent
regime is established. We denote 𝑊 the energy dissipated by the solid friction force during a period 𝜏1,
which can be expressed only in terms of 𝐹s and 𝑋 .
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All else equal, 𝐹s and 𝑋 can be adjusted to maximize the energy 𝑊 ; we denote 𝐹⋆
s and 𝑋⋆ their respective

values in the optimal situation.

C.4 Considering 𝑆b ≃ 𝑆c and 𝑆t ≪ 𝑆b, determine the expressions for 𝐹⋆
s and 𝑋⋆ as

functions of 𝜌, 𝑔, 𝑆c and 𝐴. Express the corresponding maximum energy 𝑊 ⋆,
then calculate its numerical value with 𝐴 = 5×102Pa.

1pt

SOLUTION:

During a period, there is one motion to the left and one to the right. The total length of the displacement
is 4𝑋 . The total work 𝑊 of the friction force is thus 𝑊 =4𝐹S 𝑋 .

We have to optimize this quantity with the constraint 𝜉+2𝜆 ≤ 2, which can also be written as

2𝜌𝑔𝑋
𝐴 + 𝐹s

𝑆c𝐴
≤ 1

The optimum is obtained at the limit of the condition, when 𝐹S = 𝑆c ⒧𝐴−2𝜌𝑔𝑋⒭. The work is then
𝑊 =4𝑋 𝑆c ⒧𝐴−2𝜌𝑔𝑋⒭. It is maximal for

𝑋⋆ = 𝐴
4𝜌𝑔 and 𝐹⋆

s =
𝐴𝑆c
2

leading to the following optimal work

𝑊 ⋆ = 𝐴2 𝑆c
2𝜌𝑔 ≃ 20mJ

MARKING SCHEME:

Starting point: 𝑊 =4𝐹s𝑋 0.2
Optimization: 𝜉+2𝜆 = 2 or equivalent 𝐹s = 𝑆c⒧𝐴−2𝑔𝑋⒭ 0.3
Expression of 𝑋⋆ 0.1
Expression of 𝐹⋆

s 0.1
Expression of 𝑊 ⋆ 0.2
Numerical value for 𝑊 ⋆ *with unit*: in [19mJ,21mJ] 0.1

We denote 𝑊 ⋆
pr the work of atmospheric pressure forces received by the system in the optimal situation

during a period 𝜏1.

C.5 Express 𝑊 ⋆
pr, then calculate the ratio 𝑊 ⋆/𝑊 ⋆

pr. It could be useful to represent the
evolution of the system in a (𝑃,𝑉 ) diagram, where 𝑉 is the system's volume.

1.7pt

SOLUTION:

The variations of pressure and of the vessel's position lead to fluid transfer between the cistern and
the two-part tube. As a consequence, the total volume 𝑉 (𝑡) occupied by the system in the atmosphere
changes and can be denoted
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𝑉 (𝑡) = 𝑉0+𝑉1(𝑡)

where 𝑉0 is the volume in the initial state (when 𝑥 = 0 and 𝑃a = 𝑃0) whereas 𝑉1(𝑡) is a perturbation term.
Physically, 𝑉1 corresponds to the change of the volume of liquid in the cistern, and is thus given by

𝑉1 =
𝑚1,c
𝜌

where 𝑚1,c has already been expressed in C3 (just replace 𝑋 with 𝑥(𝑡)). Given that 𝑆b ≃ 𝑆c and 𝑆t is ne-
glected, one obtains in any state

𝑉1(𝑡) = −𝑆c𝑥(𝑡)+
𝑃1(𝑡)
2𝜌𝑔  = −𝑆c𝑋 

𝑥(𝑡)
𝑋 + 1

𝜆
𝑃1(𝑡)
𝐴 

Over one period, the work of atmospheric pressure forces received by the system is defined as

𝑊pr =
1 period

−𝑃ad𝑉 =− 
1 period

𝑃1d𝑉1

and can thus be identified to the area of the cycle described by the system in a ⒧𝑃1,𝑉1⒭ diagram.

Considering the optimal situation determined in the previous question, one observes the following be-
haviour once in steady state

0 𝑡

-1

1

𝑃1 (𝑡)/𝐴

0 𝑡

-1

1

𝑥(𝑡)/𝑋⋆

1 2

3 4

1

State 𝑃1 𝑥 𝑉1
1 𝐴 𝑋⋆ −3𝑆c𝑋⋆

2 −𝐴 𝑋⋆ 𝑆c𝑋⋆

3 −𝐴 −𝑋⋆ 3𝑆c𝑋⋆

4 𝐴 −𝑋⋆ −𝑆c𝑋⋆

Therefore, one can draw the following cycle in a ⒧𝑃1,𝑉1⒭ diagram
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𝑃1

𝑉1
0

−𝐴

−−𝐴

|
𝑆c𝑋⋆

|
−𝑆c𝑋⋆

|
3𝑆c𝑋⋆

|
−3𝑆c𝑋⋆

1

2 3

4

The work of the pressure force is the surface area inside this parallelogram, that is the product of its base
2𝑆c 𝑋⋆ by its height 2𝐴. As a consequence

𝑊 ⋆
pr = 4𝑆c𝑋⋆𝐴 = 𝑆c𝐴2

𝜌𝑔

and

𝑊 ⋆

𝑊 ⋆
pr
= 1
2

MARKING SCHEME:

Physical analysis: In the optimal case, the mass 𝑀 switches
between the two positions 𝑥 =±𝑋 when 𝑃1 =±𝐴

0.1

Physical analysis: During a period, the system describes a
cycle formed of 2 iso-𝑥 and 2 iso-𝑃 transformations (sketch
of cycle, or a table or any other pertinent description)

0.2

Physical analysis: Correct sequence of the successive states
and/or direction of the cycle using 𝑥 and 𝑃

0.2

General expression of the volume of the system in an (𝑃,𝑥)
state: 𝑉 =−𝑆c𝑥+

𝑃1
2𝜌𝑔 +Cste

0.3

Expressions of the volume in the 4 states of the cycle:
−3𝑆c𝑋⋆ ⟶ 𝑆c𝑋⋆ ⟶ 3𝑆c𝑋⋆ ⟶ −𝑆c𝑋⋆(*all or nothing*)

0.2

Method used to calculate the work of atmospheric pressure
forces: 𝑊pr =− 

1 period
𝑃ad𝑉 (explicit integral or area of the

cycle in (𝑃,𝑉 ) diagram or other pertinent method)

0.2

Obtaining 𝑊 ⋆
pr = 4𝑆c𝑋⋆𝐴 = 𝑆c𝐴2

𝜌𝑔 0.2

Final result:
𝑊 ⋆

𝑊 ⋆
pr
= 1
2 0.3
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Credits:

[1]: Bruno Vacaro;

[2]: Victoria and Albert Museum, London. 
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Champagne! (10 points)
Warning: Excessive alcohol consumption is harmful to health and drinking alcohol below legal age is
prohibited.

Champagne is a French sparkling wine. Fermentation of sugars produces
carbon dioxide (CO2) in the bottle. The molar concentration of CO2 in the
liquid phase 𝑐ℓ and the partial pressure 𝑃CO2 in the gas phase are related
by 𝑐ℓ =𝑘H𝑃CO2 , known as Henry's law and where 𝑘H is called Henry's con-
stant.

Data

• Surface tension of champagne 𝜎 = 47×10−3 J ⋅m−2

• Density of the liquid 𝜌ℓ = 1.0×103 kg ⋅m−3

• Henry's constant at 𝑇0 = 20°C, 𝑘H(20°C) = 3.3×10−4mol ⋅m−3 ⋅Pa−1
• Henry's constant at 𝑇0 = 6°C, 𝑘H(6°C) = 5.4×10−4mol ⋅m−3 ⋅Pa−1
• Atmospheric pressure 𝑃0 = 1bar= 1.0×105Pa
• Gases are ideal with an adiabatic coefficient 𝛾 = 1.3 Fig. 1. A glass filled with

champagne.

Part A. Nucleation, growth and rise of bubbles
Immediately after opening a bottle of champagne at temperature 𝑇0 = 20°C , we fill a glass. The pressure
in the liquid is 𝑃0 and its temperature stays constant at 𝑇0. The concentration 𝑐ℓ of dissolved CO2 exceeds
the equilibrium concentration and we study the nucleation of a CO2 bubble. We note 𝑎 its radius and 𝑃b
its inner pressure.

A.1 Express the pressure 𝑃b in terms of 𝑃0, 𝑎 and 𝜎. 0.2pt

SOLUTION:

A.1. Laplace's law: 𝑃b = 𝑃0+
2𝜎
𝑎 0.2

In the liquid, the concentration of dissolved CO2 depends on the distance to the bubble. At long distance
we recover the value 𝑐ℓ and we note 𝑐b the concentration close to the bubble surface. According to
Henry's law, 𝑐b =𝑘H𝑃b. We furthermore assume in all the problem that bubbles contain only CO2.

Since 𝑐ℓ ≠ 𝑐b, CO2 molecules diffuse from areas of high to low concentration. We assume also that any
molecule from the liquid phase reaching the bubble surface is transferred to the vapour.

A.2 Express the critical radius 𝑎c above which a bubble is expected to grow in terms
of 𝑃0,𝜎,𝑐ℓ and 𝑐0 where 𝑐0 =𝑘H𝑃0. Calculate numerically 𝑎c for 𝑐ℓ = 4𝑐0.

0.5pt

SOLUTION:

A.2.1. 𝑎c is so 𝑐ℓ = 𝑐b

A.2.2. 𝑐b =𝑘H𝑃b =𝑘H(𝑃0+ 2𝜎
𝑎 ) and 𝑐0 =𝑘H𝑃0 so 𝑎c =

2𝜎
𝑃0(𝑐ℓ/𝑐0−1)
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A.2.3. 𝑎c = 0.3µm

A.2.1. comparison (equality 𝑐b = 𝑐ℓ or inequality 𝑐b ≤ 𝑐ℓ) 0.1

A.2.2. exact expression 𝑎c =
2𝜎

𝑃0(𝑐ℓ/𝑐0−1)
0.2

A.2.3. numerical value 𝑎c = 0.3µm 0.2

In practice, bubblesmainly grow frompre-existing gas cavities. Consider then a bubble with initial radius
𝑎0 ≈ 40µm. The number ofmoles ofCO2 transferred at the bubble's surface per unit area and time is noted
𝑗. Two models are possible for 𝑗.

• model (1) 𝑗 = 𝐷
𝑎 (𝑐ℓ−𝑐b) where 𝐷 is the diffusion coefficient of CO2 in the liquid.

• model (2) 𝑗 = 𝐾(𝑐ℓ−𝑐b) where 𝐾 is a constant here.

Experimentally, the bubble radius 𝑎(𝑡) is found to depend on time as shown in Fig. 2. Here 𝑐ℓ ≈ 4𝑐0, and
since bubbles are large enough to be visible, the excess pressure due to surface tension can be neglected
and 𝑃b ≈ 𝑃0.

A.3 Express the number of CO2 moles in the bubble 𝑛c in terms of 𝑎,𝑃0,𝑇0 and ideal
gas constant 𝑅. Find 𝑎(𝑡) for both models. Indicate which model explains the
experimental results in Fig. 2. Depending on your answer, calculate numeri-
cally 𝐾 or 𝐷.

1.2pt

Fig. 2. Time evolution of CO2 bubble radius in a glass of champagne (adapted from [1]).

SOLUTION:

A.3.1. The number of moles of CO2 (ideal gas) inside the bubble is 𝑛c = 4
3𝜋𝑎3

𝑃0
𝑅𝑇0

A.3.2. Equation : balance of CO2 in the bubble

A.3.3 d𝑛c
d𝑡 = 4𝜋𝑎2 d𝑎d𝑡

𝑃0
𝑅𝑇 = 𝑗4𝜋𝑎2 ⇒ d𝑎

d𝑡 = 𝑗 𝑅𝑇𝑃0
A.3.4. Model 1: d𝑎

d𝑡 = 𝐷𝑅𝑇
𝑎𝑃0 (𝑐ℓ−𝑐0) so 𝑎2 = 𝑎20 + 2𝐷𝑅𝑇0

𝑃0 (𝑐ℓ−𝑐0)𝑡
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A.3.5. Model 2: d𝑎
d𝑡 =

𝐾𝑅𝑇0
𝑃0 (𝑐ℓ−𝑐0) so 𝑎 = 𝑎0+ 𝐾𝑅𝑇0

𝑃0 (𝑐ℓ−𝑐0)𝑡

A.3.6. Experimental data : d𝑎
d𝑡 is constant: model 2

A.3.7 Slope of the experimental data : �̇� ≈ 150/0.62 ≈ 0.24mm ⋅ s−1

A.3.8 𝐾 = 1.0×10−4m ⋅ s−1

A.3.1. 𝑛c = 4
3𝜋𝑎3

𝑃0
𝑅𝑇0

0.1

A.3.2. any equation that that can be interpreted as a
particule balance

0.1

A.3.3. equation between �̇� (or �̇�c) and 𝑗 0.2
A.3.4. model 1 𝑎 exact with 𝑎0 present 0.2
A.3.5. model 2 𝑎 exact with 𝑎0 present 0.2
A.3.6. model 2 0.1

A.3.7. value of the slope: total mark only if d𝑎
d𝑡 is in range

[210−250]µm ⋅ s−1
0.1

A.3.8. any value of 𝐾 in range [0.9−1.1]×10−4m ⋅ s−1 0.2

Eventually bubbles detach from the bottom of the glass and continue to grow while rising. Fig. 3. shows
a train of bubbles. The bubbles of the train have the same initial radius and are emitted at a constant
frequency 𝑓b = 20Hz.

𝑧�⃗�𝑧 1 mm⃗𝑔0

Fig. 3. A train of bubbles. The photo is rotated horizontally for the page layout (adapted from
[1]).

For the range of velocities studied here, the drag force 𝐹 on a bubble of radius 𝑎moving at velocity 𝑣 in a
liquid of dynamic viscosity 𝜂 is given by Stokes' law 𝐹 = 6𝜋𝜂𝑎𝑣. Measurements show that at any moment
in time, the bubble can be assumed to be travelling at its terminal velocity.

A.4 Give the expression of the main forces exerted on a vertically rising bubble.
Obtain the expression of 𝑣(𝑎). Give a numerical estimate of 𝜂 using 𝜌ℓ, 𝑔0 and
quantities measured on Fig. 3.

0.8pt

SOLUTION:

A.4.1. Main forces: buoyancy 4
3𝜋𝑎3𝜌ℓ𝑔0 , drag force 6𝜋𝜂𝑎𝑣, weight is negligible: 𝜌CO2

𝜌ℓ = 𝑃𝑒𝑀CO2
𝑅𝑇𝜌ℓ ≈ 10−3 :

𝑚b ≪𝑚ℓ

A.4.2. Simplified equation is a balance between buoyancy and drag force 4
3𝜋𝑎3𝜌ℓ𝑔0 = 6𝜋𝜂𝑎𝑣 so

𝑣 = 2
9𝜂𝑎2𝜌ℓ𝑔0.

A.4.3. Time between two bubbles: 𝛥𝑡 = 1/𝑓b
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A.4.4. Using 𝜂 = 2𝜌ℓ𝑔0
9 × 𝑎2

𝑣 for the penultimate bubble ( 𝑛−1 ) with 𝑎𝑛−1 ≈ 0.19mm

A.4.5. 𝑣(𝑡𝑛−1) =
𝑧(𝑡𝑛)−𝑧(𝑡𝑛−2)

2×𝑓−1b
= 4.5cm ⋅ s−1

A.4.6. 𝜂 ≈ 2×10−3Pa ⋅ s

A.4.1. Expression of main forces (gravity force present or
absent): fullmark

0.1

A.4.2. expression 𝑣 = 2
9𝜂𝑎2𝜌ℓ𝑔0 (full mark on this point with or

without the gravity force)
0.2

A.4.3. taking account of the time during two positions
𝛥𝑡 = 1/𝑓b = 5×10−2 s

0.1

A.4.4. full mark for one coherent value of the radius
measured on Fig.3.
last bubble in [0.20−0.30]mm
penultimate bubble : radius in [0.16−0.24]mm
antepenultimate bubble : radius in [0.14−0.22]mm

0.1

A.4.5. full mark for one coherent value of the velocity
measured on Fig.3.
last bubble 𝑣 ∈ [4.3,4.8]cm ⋅ s−1
penultimate bubble 𝑣 ∈ [4.2,4.6]cm ⋅ s−1
antepenultimate bubble 𝑣 ∈ [3.7−4.2]cm ⋅ s−1

0.1

A.4.6. full mark for any value or 𝜂 in range [1.0−4.0]10−3Pa ⋅ s 0.2

The quasi-stationary growth of bubbles with rate 𝑞𝑎 = d𝑎
d𝑡 still applies during bubble rise.

A.5 Express the radius 𝑎𝐻ℓ of a bubble reaching the free surface in terms of height
travelled 𝐻ℓ, growth rate 𝑞𝑎 = d𝑎

d𝑡 , and any constants you may need. Assume
𝑎𝐻ℓ ≫ 𝑎0 and 𝑞𝑎 constant, and give the numerical value of 𝑎𝐻ℓ with 𝐻ℓ = 10cm
and 𝑞𝑎 corresponding to Fig. 2.

0.5pt

SOLUTION:

A.5.1. 𝑣 = d𝑧
d𝑡 =

2𝜌ℓ𝑔0
9𝜂 𝑎2 and d𝑎

d𝑡 =𝑞𝑎 so d𝑧
d𝑎 =

2𝜌ℓ𝑔0
9𝑞𝑎𝜂 𝑎

2

Neglecting 𝑎(𝑧 = 0), 𝑧 = 2𝜌ℓ𝑔0
27𝑞𝑎𝜂

𝑎3 so 𝑎𝐻ℓ = ⒧27𝑞𝑎𝜂𝐻ℓ
2𝜌ℓ𝑔0

⒭
1/3

A.5.2. 𝑎𝐻ℓ = 3.9×10−4m for 𝜂 = 2.0×10−3Pa ⋅ s

A.5.1. 𝑎𝐻ℓ = ⒧27𝑞𝑎𝜂𝐻ℓ
2𝜌ℓ𝑔0

⒭
1/3

0.3

A.5.2. full mark if 𝑎𝐻ℓ ∈ [0.36−0.49]mm 0.2

There are𝑁b nucleation sites of bubbles. Assume that the bubbles are nucleated at a constant frequency
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𝑓b at the bottom of a glass of champagne (height 𝐻ℓ for a volume 𝑉ℓ), with 𝑎0 still negligible. Neglect
diffusion of CO2 at the free surface.

A.6 Write the differential equation for 𝑐ℓ(𝑡). Obtain from this equation the charac-
teristic time 𝜏 for the decay of the concentration of dissolved CO2 in the liquid.

1.1pt

SOLUTION:

A.6.1 The rate of bubbles reaching the free surface by unit time is 𝑁b𝑓b
A.6.2. So the volume of CO2 released per unit time at the free surface is:
d𝑉
d𝑡 = 4

3𝜋𝑎3𝐻ℓ𝑁b𝑓b
A.6.3. According to A.5, d𝑉

d𝑡 =
18𝜋𝑁b𝑓b𝜂𝐻ℓ

𝜌ℓ𝑔0 𝑞𝑎
A.6.4. With 𝑞𝑎 = d𝑎

d𝑡 =
𝑅𝑇0
𝑃0 𝐾(𝑐ℓ−𝑐0) according to A3.

A.6.5. In the bubble, 𝑐b ≈ 𝑐0. Using the ideal gas law, the total number 𝑛 of CO2 moles in 𝑉ℓ verifies:
d𝑛
d𝑡 =− 𝑃0

𝑅𝑇0
d𝑉
d𝑡 =− 18𝜋𝑁b𝑓b𝜂𝐾𝐻ℓ

𝜌ℓ𝑔0 (𝑐ℓ−𝑐0)

With 𝑐ℓ =
𝑛
𝑉ℓ

, we get a first order linear ODE d𝑐ℓ
d𝑡 = 1

𝑉ℓ
d𝑛
d𝑡 =−18𝜋𝑁b𝑓b𝜂𝐾𝐻ℓ

𝜌ℓ𝑔𝑉ℓ
(𝑐ℓ−𝑐0)

A.6.6. Exponential decay with characteristic time: 𝜏 = 𝜌ℓ𝑔𝑉ℓ
18𝜋𝑁b𝑓b𝜂𝐾𝐻ℓ

A.6.1. Correct count of bubbles reaching the free surface by
unit time: 𝑁b𝑓b

0.1

A.6.2. Balance at the free surface: d𝑉
d𝑡 = 4

3𝜋𝑎𝐻ℓ
3𝑁b𝑓b 0.2

A.6.3. Exact expression of d𝑉
d𝑡 =

18𝜋𝑁b𝑓b𝜂𝐻ℓ
𝜌ℓ𝑔0 𝑞𝑎 using A.5. 0.1

A.6.4. 𝑞𝑎 = d𝑎
d𝑡 =

𝑅𝑇0
𝑃0 𝐾(𝑐ℓ−𝑐0) 0.2

A.6.5. First order linear differential equation
d𝑐ℓ
d𝑡 +

18𝜋𝑁b𝑓b𝜂𝐾𝐻ℓ
𝜌ℓ𝑔0𝑉ℓ

(𝑐ℓ−𝑐0) = 0. If an homogeneous mistake

has been made at a previous task, but the differential
equation is first order and coherent, fullmark.

0.3

A.6.6. Exponential decay with characteristic time:

𝜏 = 𝜌ℓ𝑔0𝑉ℓ
18𝜋𝑁b𝑓b𝜂𝐾𝐻ℓ

full mark if the numerical coefficient is

absent or different of 1/18𝜋 (reasonable solution)

0.2

Part B. Acoustic emission of a bursting bubble
Small bubbles are nearly spherical as they reach the free surface. Once the liquid film separating the
bubble from the air thins out sufficiently, a circular hole of radius 𝑟 forms in the film and, driven by
surface tension, opens very quickly (Fig. 4. left). The hole opens at constant speed 𝑣f (Fig. 4. right). The
film outside the rim remains still, with constant thickness ℎ.
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𝑟𝑐

𝑎

𝐴

(1)

(2)

(3)

(𝛼)

ℎ ⃗𝑣f

(𝛽)

𝐴 𝑟(𝑡)

(𝛾) (𝛿)
⃗𝑣f
𝑣fd𝑡

𝑅m ℎ

𝑟(𝑡)

𝑧

𝐴

𝑣fd𝑡

𝐴

𝑟(𝑡)

Fig. 4. (Left) (𝛼) Bubble at the surface: (1) liquid, (2) air at pressure 𝑃0 and (3), CO2 at pressure
𝑃b, (𝛽) and (𝛾) retraction of the liquid film, where the rim is in dark blue, (𝛿) bubble collapse.
(Right) Retraction of the liquid film at time 𝑡. Top: sketch of the pierced film seen from above.
Bottom: cross-section of the rim and the retracting film. During d𝑡 the rim accumulates nearby
liquid (dotted).

Due to dissipative processes, only half of the difference of the surface energy between 𝑡 and 𝑡+d𝑡 of the
rim and the accumulated liquid is transformed into kinetic energy. We further assume that the variation
of the surface of the rim is negligible compared to that of the film.

B.1 Express 𝑣f in terms of 𝜌ℓ,𝜎 and ℎ. 1.1pt

SOLUTION:

B.1.1. and 1.2. Variation of kinetic energy: system : the rim (perimeter ℓ = 2𝜋𝑟) and the vol-
ume 𝛿𝒱 =ℎℓd𝑡 = ℎ2𝜋𝑟𝑣𝑓d𝑡::::::::::::::::::::::

𝛿𝒱 =ℎℓ𝑣𝑓d𝑡 = ℎ2𝜋𝑟𝑣𝑓d𝑡: during 𝑑𝑡 the volume 𝛿𝒱 get a kinetic energy
𝑑𝐸𝑐 = 1

2𝜌ℓ𝛿𝒱𝑣2𝑓 = 1
2𝜌ℓℎℓ𝑣𝑓d𝑡 = 𝜋𝑟𝜌ℓℎ𝑣𝑓d𝑡:::::::::::::::::::::::::::::::::::::

𝑑𝐸𝑐 = 1
2𝜌ℓ𝛿𝒱𝑣2𝑓 = 1

2𝜌ℓℎℓ𝑣3𝑓 d𝑡 = 𝜋𝑟𝜌ℓℎ𝑣3𝑓 d𝑡.
B.1.3. surface tension energy: 𝐸𝑠 =𝜎𝑆 for a surface 𝑆
B.1.4. 𝛿𝐸𝑠 =−2𝜎ℓ𝑣𝑓d𝑡 = −4𝜎𝜋𝑟𝑣𝑓d𝑡.
B.1.5. Kinetic energy theorem: the lost energy is 𝛿𝐸𝑠/2 < 0 so d𝐸𝑐 +𝛿𝐸𝑠 = 𝛿𝐸𝑠/2
B.1.6. 𝑣𝑓 =√2𝜎/𝜌ℓℎ

If partial answer: 𝑣𝑓 =√𝜎/𝜌ℓℎ obtained only by dimensional analysis: 0.2 pt to the question
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B.1.1. Any expression of kinetic energy 0.1
B.1.2. Variation of kinetic energy (differential or finite
variation accepted)

0.2

B.1.3. Expression of a surface energy or a variation. 0.1
B.1.4. Exact expression of 𝛿𝐸𝑠 0.3
B.1.5. Kinetic energy balance (without sign mistake). If the
candidate forget the energy loss, it is treated as a small
mistake (-0.1pt)

0.2

B.1.6. exact expression of 𝑣𝑓 0.2

𝑚P

𝑆
𝑧

𝑃(𝑡)

𝑧

0

𝑃0

𝑎

2𝑟

Fig. 5. (Left) a Helmholtz resonator. (Right) a bubble as
an oscillator.

When the film bursts, it releases internal
pressure and emits a sound. We model
this acoustic emission by a Helmholtz res-
onator: a cavity open to the atmosphere
at 𝑃0 through a bottleneck aperture of
area 𝑆 (Fig. 5. left). In the neck, a mass
𝑚p makes small amplitude position oscil-
lations due to the pressure forces it expe-
riences as the gas in the cavity expands
or compresses adiabatically. The grav-
ity force on 𝑚p is negligible compared to
pressure forces. Let 𝑉0 be the volume of
gas under the mass𝑚p for 𝑃 = 𝑃0 as 𝑧 = 0.

B.2 Express the frequency of oscillation 𝑓0 of𝑚p. Hint: for 𝜀≪ 1, (1+𝜀)𝛼 ≈ 1+𝛼𝜀. 1.1pt

SOLUTION:

B.2.1. Pressure forces on𝑚𝑝: 𝐹𝑧 = 𝑃(𝑡)𝑆 −𝑃0𝑆
B.2.2. Volume 𝑉 (𝑡) = 𝑉0+𝑆𝑧

B.2.3. Adiabatic and reversible compression for an ideal gas: 𝑃𝑉 (𝑡)𝛾 = 𝑃0𝑉 𝛾
0 so𝑃(𝑡) = 𝑃0 ⒧

𝑉0
𝑉0+𝑆𝑧

⒭
𝛾
= 𝑃0 ⒧

1
1+𝑆𝑧/𝑉0

⒭
𝛾

B.2.4. Approximation: 𝑃(𝑡) ≈ 𝑃0(1−𝛾 𝑆𝑧
𝑉0 )

B.2.5. Pressure force: 𝐹𝑧 =−𝛾𝑆2𝑃0
𝑧
𝑉0

B.2.6. Newton's 2nd law: 𝑚𝑝�̈� = −𝛾𝑆2𝑃0
𝑧
𝑉0

so𝑚𝑝�̈�+𝛾𝑆2𝑃0 𝑧
𝑉0 = 0

B.2.7. Harmonic oscillator of angular frequency 𝜔2
0 = 𝑆2 𝑃0𝛾

𝑚𝑝𝑉0

B.2.8. 𝑓0 =
1
2𝜋


⎷
𝑆2𝑃0𝛾
𝑚𝑝𝑉0
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B.2.1. Pressure force with 𝑃0 0.1
B.2.2. Expression of volume 𝑉 (𝑡) 0.1
B.2.3. Expression of 𝑃(𝑡) with adiabatic reversible process for
an ideal gas

0.2

B.2.4. Approximate pressure 0.2
B.2.5. Exact linearized pressure force 0.1
B.2.6. Law of motion 0.1
B.2.7. Harmonic oscillator, angular frequency 0.2
B.2.8. Expression of 𝑓0 0.1

The Helmholtz model may be used for a bubble of radius 𝑎. 𝑉0 is the volume of the closed bubble. From
litterature, the mass of the equivalent of the piston is 𝑚𝑝 = 8𝜌𝑔𝑟3/3 where 𝑟 is the radius of the circular
aperture and 𝜌𝑔 = 1.8kg ⋅m−3 is the density of the gas (Fig. 5. right). During the bursting process, 𝑟 goes
from 0 to 𝑟c, given by 𝑟c =

2
√3

𝑎2
𝜌ℓ𝑔0
𝜎 . At the same time, the frequency of emitted sound increases until

a maximum value of 40kHz and the bursting time is 𝑡𝑏 = 3×10−2ms.

B.3 Find the radius 𝑎 and the thickness ℎ of the champagne film separating the
bubble from the atmosphere.

1.1pt

SOLUTION:

Determination of 𝑎
B.3.1. The maximal value of 𝑓0 is 𝑓0 = 40kHz is obtained for 𝑟 = 𝑟𝑐

B.3.2. Exact expression of 𝑓0 with𝑚= 8𝑟3
3 𝜌𝑔 and 𝑆 = 𝜋𝑟2𝑐 : 𝑓0 =

1
2𝜋


⎷
3𝑟𝑐𝜋2𝑃0𝛾
8𝜌𝑔𝑉0

so 𝑓0 =
1
2𝜋

𝛾𝑃0
𝜌𝑔

3√3𝜋
16𝑎 

𝜌ℓ𝑔0
𝜎

or 𝑎 = 3√3
64𝜋

𝛾𝑃0
𝜌𝑔𝑓20


𝜌ℓ𝑔0
𝜎

B.3.3. 𝑎 = 0.53mm
Determination of ℎ

B.3.4. 𝑟c =
2
√3

𝑎2
𝜌ℓ𝑔0
𝜎 and 𝑟𝑐 = 0.15mm so 𝑣𝑓 =

𝑟𝑐
𝑡𝑏

= 5.0m ⋅ s−1

B.3.5. ℎ = 2𝜎
𝜌ℓ𝑣2𝑓

= 3𝑡2b
2𝑎4


⎷

𝜎3

𝜌3ℓ𝑔0 :::::::::::::::::
ℎ = 2𝜎

𝜌ℓ𝑣2𝑓
= 3𝑡2b𝜎2

2𝑎4𝜌2ℓ𝑔0:

B.3.6. Numerical value ℎ = 3.7µm
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B.3.1. Use of 𝑟𝑐for 𝑓0 0.1
B.3.2. Exact expression of 𝑓0 in terms of 𝑎,𝜌𝑔 ,𝜎,𝑔0,𝜌ℓ,𝑃0 or
expression of 𝑎

0.3

B.3.3. Exact numerical value between 0.5mm and 0.6mm 0.2
B.3.4. Relationship between 𝑡𝑏 ,𝑣f and 𝑟𝑐 or 𝑎 0.2
B.3.5. Expression of ℎ in terms of 𝜎,𝜌ℓ and 𝑣𝑓 (or 𝑎 and 𝑡b) 0.1

B.3.6. Numerical value ℎ = 3.7µm 0.2

Part C. Popping champagne
In a bottle, the total quantity of CO2 is 𝑛T = 0.2mol, either dissolved in the volume 𝑉L = 750mL of liquid
champagne, or as a gas in the volume 𝑉G = 25mL under the cork (Fig. 6. left). 𝑉G contains only CO2.
The equilibrium between both CO2 phases follows Henry's Law. We suppose that the fast gaseous CO2
expansion when the bottle is opened, is adiabatic and reversible. Ambient temperature 𝑇0 and pressure
𝑃0 = 1bar are constant.

𝑑

𝑃0

𝑃i, 𝑉G

𝑐ℓ = 𝑘H𝑃i
𝑉L

ℓ0

}(4)

}(3)

}(2)

}

(1)}

Fig. 6. Left: traditional bottleneck: (1) surrounding air, (2) cork stopper, (3) headspace, (4)
liquid champagne. Right: Two phenomena observed while opening the bottle at two different
temperatures (adapted from [2]).

C.1 Give the numerical value of the pressure 𝑃i of gaseous CO2 in the bottle for
𝑇0 = 6°C and 𝑇0 = 20°C.

0.4pt

SOLUTION:

C.1.1. Conservation of CO2 molecules: 𝑛𝑇 =𝑛𝑉 +𝑛𝐿 =𝑛𝑉 +𝑘𝐻 (𝑇0)𝑃𝑖𝑉𝐿

C.1.2. Ideal gas law: 𝑛𝑉 =
𝑃𝑖𝑉𝐺
𝑅𝑇0

𝑃𝑖 =
𝑛𝑇

𝑉𝐿𝑘𝐻 (𝑇0)+
𝑉𝐺
𝑅𝑇0

=

𝑛𝑇𝑅𝑇0
𝑉𝐺

1+𝑅𝑇0𝑘𝐻 (𝑇0)
𝑉𝐿
𝑉𝐺

C.1.3. For 𝑇0 = 6°C: 𝑃𝑖 = 4.81bar
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C.1.4. For 𝑇0 = 20°C: 𝑃𝑖 = 7.76bar

C.1.1. Conservation of CO2 molecules 0.1
C.1.2. Litteral expression of 𝑃𝑖 0.1
C.1.3. For 𝑇0 = 6°C : 𝑃𝑖 = 4.81bar 0.1
C.1.4. For 𝑇0 = 20°C : 𝑃𝑖 = 7.76bar 0.1

Another step of champagne production (not described here) leads to the following values of 𝑃𝑖 that we
will use for the next questions: 𝑃i = 4.69bar at 𝑇0 = 6°C and 𝑃i = 7.45bar at 𝑇0 = 20°C.
During bottle opening, two different phenomena can be observed, depending on 𝑇0 (Fig. 6. right).

• either a blue fog appears, due to the formation of solid CO2 crystals (but water condensation is
inhibited);

• or a grey-white fog appears, due towater vapor condensation in the air surrounding the bottleneck.
In this latter case, there is no formation of CO2 solid crystals.

The saturated vapor pressure 𝑃CO2
sat for the CO2 solid/gas transition follows : log10 ⒧

𝑃CO2
sat
𝑃0

⒭ = 𝐴− 𝐵
𝑇 +𝐶 with

𝑇 in K, 𝐴 = 6.81, 𝐵 = 1.30×103K and 𝐶 =−3.49K.

C.2 Give the numerical value 𝑇f of the CO2 gas at the end of the expansion, after
opening a bottle, if 𝑇0 = 6°C and if 𝑇0 = 20°C, if no phase transition occured.
Choose which statements are true (several statements possible):

1. At 𝑇0 = 6°C a grey-white fog appears while opening the bottle.
2. At 𝑇0 = 6°C a blue fog appears while opening the bottle.
3. At 𝑇0 = 20°C a grey-white fog appears while opening the bottle.
4. At 𝑇0 = 20°C a blue fog appears while opening the bottle.

0.7pt

SOLUTION:

C.2.1. The adiabatic reversible expansion goes from 𝑃𝑖 to 𝑃0.

C.2.2. 𝑇𝑓 = 𝑇0 ⒧
𝑃𝑖
𝑃0
⒭
(1/𝛾)−1

C.2.3. For 𝑇0 = 6°C: 𝑃𝑖 = 4.69bar and 𝑇𝑓 = 195.3K=−77.8°C.
C.2.4. For 𝑇0 = 20°C: 𝑃𝑖 = 7.45bar and 𝑇𝑓 = 184.3K=−88.8°C.
C.2.5. First method: comparison 𝑃sat(𝑇𝑓) and 𝑃𝑓 = 𝑃0.
Second method: evaluation of the transition temperature at 𝑃0 and comparison with 𝑇𝑓.

C.2.6. First method: 𝑃CO2
sat (𝑇𝑓 = 6°C) = 1.07bar > 𝑃0 . As the solid-liquid frontier has a positive slope in 𝑃,𝑇

state-diagram, the final state of CO2 is gaseous. 𝑃CO2
sat (𝑇𝑓 = 20°C) = 0.41bar < 𝑃0 . As the solid-gas frontier

has a positive slope in 𝑃,𝑇 state-diagram, the final gaseous state hypothesis is inconsistent and a phase
transition has occured in the latter case.

Second method: 𝑇𝑡𝑟𝑎𝑛𝑠 =
𝐵

𝐴− log10 ⒧
𝑃0
𝑃0
⒭
−𝐶 . 𝑇𝑡𝑟𝑎𝑛𝑠 = 194.4K = −78.8°C. For 𝑇0 = 6°C: 𝑇𝑓 = 195.3K > 𝑇𝑡𝑟𝑎𝑛𝑠; the

final state of CO2 is gaseous. For 𝑇0 = 20°C: 𝑇𝑓 = 184.3K < 𝑇𝑡𝑟𝑎𝑛𝑠; the final gaseous state hypothesis is
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inconsistent and a phase transition has occured.

C.2.7. The true statements are: 1 and 4.

C.2.1. Final pressure of the expansion. 0.1
C.2.2. Litteral expression of 𝑇𝑓. 0.1

C.2.3. For 𝑇0 = 6°C: 𝑃𝑖 = 4.69bar and 𝑇𝑓 = 195.3K ; 0.1

C.2.4. For 𝑇0 = 20°C: 𝑃𝑖 = 7.45bar and 𝑇𝑓 = 184.3K; 0.1

C.2.5. Idea of comparison between 𝑃sat and 𝑃0 or evaluation
of the transition temperature at 𝑃0 and idea of comparison
with 𝑇𝑓.

0.1

C.2.6. Numerical comparison. 0.1
C.2.7. True statements (all or nothing). 0.1

During bottle opening, the cork stopper pops out. We now determine themaximumheight𝐻c it reaches.
Assume that the friction force 𝐹 due to the bottleneck on the cork stopper is 𝐹 = 𝛼𝐴 where 𝐴 is the area
of contact and 𝛼 is a constant to determine. Initially, the pressure force slightly overcomes the friction
force. The cork's mass is 𝑚 = 10g, its diameter 𝑑 = 1.8cm and the length of the cylindrical part initially
stuck in the bottleneck is ℓ0 = 2.5cm. Once the cork has left the bottleneck, you can neglect the net
pressure force.

C.3 Give the numerical value of 𝐻c if the external temperature is 𝑇0 = 6°C. 1.3pt

SOLUTION:

C.3.1. Let us evaluate the work of the friction force.
−→𝐹 = −𝛼.𝜋𝑑(𝑙0−𝑧)−→𝑢𝑧. Initially, this force slightly com-

pensates the pressure force: 𝐹 = 𝜋𝛼𝑑ℓ0 = 𝜋𝑑
2

4 (𝑃𝑖 −𝑃0) so 𝛼 = (𝑃𝑖 −𝑃0)
𝑑
4ℓ0

C.3.2.
−→𝐹 =−(𝑃𝑖 −𝑃0)𝜋𝑑2

(ℓ0−𝑧)
4ℓ0

−→𝑢𝑧 The total work is therefore: 𝑊𝑓 =−𝛼𝜋𝑑ℓ
2
0
2 = −(𝑃𝑖 −𝑃0)𝜋𝑑

2

8 ℓ0

C.3.3. and C.3.4. Work of the internal pressure force:

First method: the variation of internal energy of the gas is:

𝛥𝑈𝑔 = 𝑛𝑉 𝑅
𝛾−1 (𝑇𝑓 −𝑇0) =

𝑛𝑉 𝑅
𝛾−1 𝑇0

⎛

⎝
1

⒧1+ 𝜋𝑑2ℓ0
4𝑉𝐺 ⒭𝛾−1

−1
⎞

⎠
= 𝑃𝑖𝑉𝐺

𝛾−1

⎛

⎝
1

⒧1+ 𝜋𝑑2ℓ0
4𝑉𝐺 ⒭(𝛾−1)

−1
⎞

⎠
As its expansion is adiabatic: 𝛥𝑈𝑔 =𝑊cork→CO2 = −𝑊CO2→cork The cork stopper receives therefore a work
from this gas equals to −𝛥𝑈𝑔.

𝑊CO2→cork = 𝑃𝑖𝑉𝐺
𝛾−1

⎛

⎝
1− 1

⒧1+ 𝜋𝑑2ℓ0
4𝑉𝐺 ⒭(𝛾−1)

⎞

⎠
Second method: let us write 𝑃 the internal pressure during the expansion. The work received by the cork
is:

𝑊CO2→cork =∫𝑉𝐹
𝑉𝐺 𝑃𝑑𝑉 , where 𝑉𝐹 =𝑉𝐺 +

𝜋𝑑2ℓ0
4 and 𝑃0𝑉 𝛾

𝐹 = 𝑃𝑖𝑉 𝛾
𝐺 .
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The integration leads to the same result.

C.3.5. The work due to the external pressure 𝑃0 is: 𝑊𝑒 =−𝑃0.
𝜋𝑑2
4 ℓ0

C.3.6. Energy balance. The cork stopper has an initial kinetic energy: 𝐸𝑐 =−𝛥𝑈𝑔 +𝑊𝑓 +𝑊𝑒

(The work of the weight is negligible and should not be taken into account).

At 𝑇0 = 6°C: 𝑃𝑖 = 4.69bar . 𝑊𝑓 =−1.17 J;𝑊𝑒 =−0.64 J; 𝛥𝑈𝑔 =−2.57 J; 𝐸𝑐 = 0.76 J

C.3.7. The maximum height reached by the cork stopper is therefore: 𝐻𝑐 =
𝐸𝑐
𝑚𝑔0

=
−𝛥𝑈𝑔 +𝑊𝑓 +𝑊𝑒

𝑚𝑔0
.

C.3.8. 𝐻𝑐 = 7.7m
 

If the candidates assumed a constant pressure 𝑃𝑖 for the gaseous CO2 during its expansion, they would
find a work done by CO2on the cork equal to: 𝑃𝑖(𝜋ℓ0𝑑2/4) = 3 J instead of 2.56 J and finally 𝐻𝑐 = 12m. The
difference is not negligible!

C.3.1. Correct expression of 𝛼 (all or nothing).
If 𝛼 is not correct (contribution of 𝑃0 forgotten for example),
0 point but the following items are evaluated with this
uncorrect 𝛼.

0.2

C.3.2. Expression of the friction work (all or nothing)
 

0.2

C.3.3. Consequences of the adiabatic reversible expansion
(1st principle with 𝑄 = 0 or 𝑃𝑉 𝛾 = 𝑃𝑖𝑉 𝛾

𝐺 )
0.1

C.3.4. Exact expression of the work (all or nothing)
Partial points : if 𝑃 is considered constant during the
expansion, 0 point for C.3.4. but all points for the following
items if coherent with the incorrect work expression.

0.3

C.3.5. Work due to external pressure correct.
If this item is forgotten by the candidate, 0 point.

0.1

C.3.6. Correct 𝐸𝑐 with the 3 contributions (even if errors in
the writing of the contributions).
If the candidate has forgotten the contribution of the
external pressure, 0 point.

0.1

C.3.7. Correct energy balance during the free flight or use of
Newton's second law.

0.2
:::
0.1

C.3.8. Correct numerical value of 𝐻𝑐.
If the candidate has forgotten the contribution of the
external pressure in C.3.5 but 𝐻𝑐 is coherent, fullmark.

0.2

[1] Liger-Belair et al, Am. J. Enol. Vitic., Vol. 50, No. 3 (1999).

[2] Liger-Belair et al., Sc. Reports 7, 10938 (2017).
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