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A. Earth as a blackbody

A-1. All the energy emitted from the surface of the Sun, will reach a sphere of radius d , therefore:

oTs. (4nR%) = (4md?).S,

S = aT (RS)Z—567><10-8 x (5.77 x 103 K)* x 6.96 x 10° m)* 135x 103
0=%s\q) = m2K* 15x107m) m?
A-1 (0.6 pt)
4 (Rs)? . 3 2
So=0Tg. (7) , Numerical value of S, = 1.35 X 10° W/m

A-2. It is assumed that the Earth is in thermal equilibrium. Therefore, the energy it receives per unit
time should be equal to the energy it radiates per unit time. The Earth’s cross-section intercepting
the solar radiation at this distance has an area of mR% , but the Earth radiates heat from all points
on its surface with an area of 4R, so:

1
So\4
ﬂRé.SO = 47TR§0’T§ - Tg = (ﬁ) =278 K
A-2 (0.6 pt)
1
Te = (:_3)4 - %Ts , Numerical value of Ty = 278 K

A-3. The radiation is maximum at the wavelength for which the derivative of u with respect to 4 is

Z€ro:
hc
du  2mhc? 1 - hc exP(AkBT)
dr~ a8 hc |7 AkgT hc
— 3 -1 B —— -1
X (T exXP (eaT
hc
du hc exp (A—kaT)
— =2, =0 = =5
da’+='m AmkgT exp( hc )_ 1
AnKgT
Defining x,, = I hkc - we obtain the following transcendental equation:
mitB

5(1—em)—x,=0
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A-3 (0.4 pt)

fx)=5(1—e*)—x

A-4. The first guess is xr(n1 )=5. Substituting repeatedly for x,,, we can continue as follows:

xP =51 —e7%) =497
x& =501 - e™*7) = 4.97

Further iterations do not change the value of x,, to three significant figures, so:

hc 1
— b =1240eV-nm X — 2.89 x 106 nm - K
eV M R 97 % 8.62 X 10-5 eVK-1 nm

AnT =
" xka

A-4 (0.4 pt)
, Numerical value of b = [2.89,2.90] X 10° nm - K

Xy, = {4.96,4.97}

A-5. Using Wien’s displacement law and the constant b obtained in the previous part, we can calculate
the wavelength at which the radiation from the Sun and the Earth reaches its maximum:

cn _ b 2.89x10°nm-K
ASun _

=— = = [5.01,5.02] x 102
max =TT 577 x 105K ] fm

6 .
JEarth _ i _ 2.89 x10°nm-K

max = T 278K

=1.04 X 10* nm

A-5 (0.2 pt)
,AEarth — 1 04 x 10 nm

ASun = [5.01,5.02] X 102 nm

max

A-6. From the diagram, it can clearly be seen that yiig (Afnax) = u(ﬂﬁf‘&h, TE) , S0 we have:

5 Rs\* 2mhc? 1 Rs\? 2mhc? 1
Us (Ag;lar;( = (7) Sun \ 5 hc - (?) Sun \3 hc

(Amax) exp (W) -1 (Amax) exp (—ka) -1

BIS

max

2mhc? 1 2mhc? 1
u(lﬁﬁ{,ﬁh, TE) - (AEarth 5 hc - (lEarth)S ( hc ) -1
max exp W -1 max exp —ka
max "“BYE

Dividing these two quantities we’ll find:



IRRO -

HAth
T T oieid i i i 5 55 M I B ' i e i 1 o i i b i e e o
(d )2 (TE)S 1.20,1.21] x 1072
= |— X | — = . , 1. X
V=& Ts [ ]
A-6 (0.8 pt)
2 5 2 Sun § O
y = (Ri) X (;—E) = (Ri) X (;E'::;) , Numerical value of y = [1.20,1.21] X 1072
S S S max

B. The Greenhouse Effect

B-1. Both the Earth and its atmosphere are in thermal equilibrium, so one can write an equation that
balances the input and output powers. For the Earth we have:

(TRE) (1 — 14)Sy + (4mRE)oTA = (4nRE)0TE,
and for the atmosphere:
(4nRE)oTg = 2(4mRE)o Ty,

Note that the coefficient 2 on the right-hand side of the equation is due to the atmosphere
radiating heat on both sides (above and below). Eliminating T from the two relations we

obtain:
1
a-re\* 1
Ty = — | = 258%x 102K = Tg=(2T4)* =3.07 x10%K
B-1 (1.0 pt)
1
(1-14)30)* . 2
Ty = T4 , Numerical value of T, = 2.58 X 10* K
s 1
1-1r4)=2\*
Tg = <( ;A) 2) , Numerical value of Tg = 3.07 X 102 K

B-2. As can be seen in the figure, a fraction (1 — r) of the solar radiation reaches the Earth’s surface
after traversing the atmosphere. A fraction 1 of this light is reflected back and reaches the
atmosphere, where a fraction 7, is reflected and returns to the Earth’s surface. This process
repeats ad infinitum and the sum of the powers transmitted at all these instances, determines the
albedo. Denoting the power returned to space after n reflections by S,,, we’ll have S, = 1,5, and
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the remaining power i.e. (1 —14)S, , reaches the Earth’s surface. From this power, (1 — 13)7:S,
is reflected, and a fraction 1 — r, of it is transmitted through the atmosphere to the space, hence:
(1-m)* .

51 =1- TA)ZTESO = T 1eSo

The power that is reflected back to the Earth by the atmosphere after (n — 1) reflections is

Sn-1 (;—’;), of which a fraction 7§ is again sent back towards the atmosphere on the n’th
1A

reflection, and the atmosphere allows a fraction 1 — r, of this reflected power to escape into the
space, thus:

~ Sn— ~ ~
Sn = i; TaTg X (1 —13) = 1276501 = (rare)" " '$1
A

By adding all these terms, one obtains the power returned per unit area from the Earth-atmosphere
system:

5 = Z S‘-Tl = 50 + 51 Z(TATE)n_l = TASO + (1 - TA)ZTESO X—-
n=0 n=1 1= TATE

1 —14)2n
—[rA+( A)°TE

= XS
1—T'ATE ] 0

Dividing by the solar constant we get the value for albedo:

S 1 —14)%n

=3.13x1071
SO 1-— TATE

B-2 (1.6 pt)

(1-rp)?rg

, Numerical value of @ = 3.13 x 10~1
1—TATE

a=rA+

B-3. Again, thermal equilibrium requires the input and output powers to be equal both for the Earth
and for the atmosphere, the only difference being that the Earth absorbs now a fraction 1 — a of
the Sun’s radiation. Thus, for Earth we have:

(4nR3)eoTx + (mRE)(1 — a)Sy = (4mRE)oTg,
and for the atmosphere:
(4nRE)eoTg = 2(4mRE)eoTy

Ql-a) 1% Tg\*
Tg = |——=8§ T ==
E72002-0)""° ' A

[y
[y
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oT¢ (1;“)50] [ - 129,
€= 7 =2 3 = [8.07,8.11] x 10~*
oTy Tg
B-3 (1.0 pt)

(1-a) ]l
— —0554-

E = |30m20 50 , Numerical value of e = [8.07,8.11] x 1071

B-4.
1
ATy 1[1-a)S 1
de 4|202-¢)| (2-¢)
ar. = e %€ _ 40T 1B w001 = [487492] x 10-1
E_deee_(l—a)SO 4 01 = [4.87,4.92]
B-4 (0.8pt)

1
dTE _ 1 (1—&)50 4 1

de 4 20(2—€)] (2-¢)

, Numerical value of § Ty = [4.87,4.92] x 1071 K

B-5. The equations for thermal equilibrium are similar to those for Part B.3, only a non-radiative
thermal current needs to be added. For the Earth:

(mRE)(1 — a)Sy + (4mRE)ecTx = (4mRE)oTg + (AnRE)k(Tg — Ta),
and for the atmosphere:
(4mR%)ecTg + (4mR2)k(Tg — Tp) = 2(4mRE)ecTy.

After completing the calculations, we will have:

oT# — (1 - @) 32
€= % _[847,852]x 107
o(Tg —Ty)

S
eac(2TH — T QT —Tg) X [GTE‘ -—(1-a0)F
- Tg—Ty, (Tg —Ta) X (Tg — Ta)

= [3.57,3.66] x 10~ W/m2K
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B-5 (1.6pt)

aTé‘—(l—a)%o

o(Tg~Tx)

, Numerical value of € = [8.47,8.52] x 107!

_ (21i-Td)x[oTE—(1-a)>2 |

T (ToTo) , Numerical value of k = [3.57,3.66] X 10~ W/m?K

B-6. In order to find the change in the temperatures of the Earth and the atmosphere in terms of € and
k, we take the logarithm of both sides of the relations before taking the derivative:

S
Ine = ln[aTg‘ - (1—0():0] —Ino—In(Tg —TY)

Ink=Ine+Ino+ Q2T —Tg) — In(Tg — Ty)

dT, dT, dT
3 E 3 E 3 A
1: 4'O'TE% _4TE%_4TA%
€ aTg—(1—a)i—° Tg —Ta
dT dTg dTg dT
3UIA _ 473 ClE E_ 4lp
0:_+8TA de e ge _de  de
€ 2T — T Tg — Ta
1 4T3 1dTg 8T3 1 1dT,
€ +o=3 ) = € ) 7T
TE - TA ZTA - TE de ZTA - TE TE - TA de
4T3 40Tg dTg 4T3 dTa
1+e€|= i S == 7€

Solving this set of linear equations and substituting € in B-5, we find:
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o -1 ||, . (T,gL —Tj{) 8T, 1 ]]
3 4 _ 4 —
de 3 T4 — (1 — So 3 3
[ 14T ]_UA 1-a)7 (ﬁ) 8T} 1 ]
Tg—Ta  2T% —T¢ JTé—(l—a)% Ta) 12T —Tg  Teg—Ta
To —Tj{) 8T, 1 ]
ATy 1+( Ty e
€ =
de S
[ 1, 4T ]_ oy -(1-0)7 (5)3 8z 1 ]
Tg—Ta  2T4 —Tg GTE‘—(I—a)i—O Ta) 2T —Tg¢  Te—Ta
ar, = ¢ TE e _ [5.21,5.28] x 10~1 K
E— € de c = . , O
B-6 (1.0pt)

{e[ L 4T ]ﬂ=1+e[ BTA - ATy

Tg—Tp =~ 2T3—TE] de 2Th—TE  Tg—Ta] de
@) 4T3 40T} dT 4T3 AT
1+€ E— e —E = _TA 4
T4 _T4 4 So| de TE T4 " de
E—1A aTE—(l—a)T E—1A

(b) 8T = [5.21,5.28] x 10~1 K
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Marking Scheme Q1 (10 points)

Part A (3.0 pt) If the final answer is written then the complete point will be achieved

A-1 Rg

2
So=0Ts. (7) (0.4pt),

[Realizing energy conservation (0.1pt)]

Numerical value of S, = 1.35 X 103 W/m? (0.2pt)

[more than 4 significant figures (0.1pt)]

A-2 1 0.6 pt
— (30)\+ — |Rs
T = (32) = [ Ts 0400,

[realizing energy balance (0.1pt)]
Numerical value of Tg = 278 K (0.2pt)
[more than 4 significant figures (0.1pt)]
A3 | f(x)=5(1—e™™) —x 0.4 pt
A-4 | xp, = {4.96,4.97} (0.3 pt), 0.4 pt
[more than 4 significant figures (0.2pt)]

Numerical value of b = [2.89,2.90] X 10° nm.K (0.1 pt)
[more than 4 significant figures (0.1pt)]

A-5 | ASun — 501, 5.02] X 102 nm(0.1 pt), 0.2 pt
)lfna{;h = 1.04 x 10* nm(0.1 pt)

[more than 4 significant figures (0.1pt)]

0.6 pt

M=) < () = (5) x () osen, o
[realizing iig = (%)2 s (1)(0.3p1)]

Numerical value of y = [1.20,1.21] X 1072 (0.2 pt)
[more than 4 significant figures (0.1pt)]

Part B (7.0 pt)

B-1 1 1.0 pt
(<>—> ?
TA =

Two correct expressions (0.8 pt)

[One correct expression (0.6 pt)]

[no correct expression: for each energy balance relation (0.2pt)]
Numerical value of Ty = 2.58 X 102 K (0.1 pt)

Numerical value of Tz = 3.07 X 102 K (0.1 pt)

[more than 4 significant figures (0.1pt)]

a=rp+ —(11__?:::}3 (1.4pt) 1.6pt

[S0=7aSo (0.1 pt)
S1 =1 —1rp)%1ESy =

B-2

(1-714)%
ra

155 (0.3 pt)
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¢ Sn— ~ 4=
Sn = 1—1“: Targ X (1 —14) = 1a758n-1 = (rar5)"'S; (0.5pt)

§=Ynz05n = S0+ S Eaza(rare)™™ (0.3 pt)]

Numerical value of @ = 3.13 x 10~ (0.2pt)

[more than 4 significant figures (0.1pt)]

B-3 : 1.0 pt
e = 30500 S| (0-6p0) i

Numerical value of € = [8.07,8.11] x 1071 (0.4pt)

[wrong numerical value: correct expression for € (0.2pt)]

[more than 4 significant figures (0.3pt)]

B-4 _ 1 0.8 pt

daLeE = i[ii(:ﬁ?r (Zie) (0.6 pt),

Numerical value of §Tg = [4.87,4.92] x 10~! K (0.2pt)

[more than 4 significant figures (0.1pt)]

B-5 oTE—(1-a)>2 1.6 pt
EEGEEA

_ (eri-r)x[oT-(1-)%2 |
— (TE-THX(Te=Ta)
[Correct relations for balance of energy (0.3+0.3 pt)]
Numerical value of € = [8.47,8.52] X 1071 (0.2pt)
Numerical value of k = [3.57,3.66] X 10~1 W/m?K (0.2pt)
[more than 4 significant figures for each one (0.1pt)]
B-6 | (a)(0.4+0.4) 1.0 pt
1 4T3 \dr 8T3 1 lar
G[TE_TA ZTXETé]d_: =1+ e[zr,‘i—ATé TE—TA]d_EA
(0.6 pt)

(0.6pt)

3 3 3
4T 401 dT 4T dTa

44 — 4 4t
E—TA aT‘é—(l—a)%’ de Tg—Ta de

(b) 6Tg = [5.21,5.28] x 10~1K (0.2pt)
[more than 4 significant figures for each one (0.1pt)]
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A: Paul Trap

A-1. Due to the symmetry, on the z-axis the only non-zero component of electric field is in
the z-direction. So:

dq 1 N z
4‘7'[60 (RZ +Z2) (RZ

E)(OIOI Z) = EZ(O’O' Z) 2 - 2 f s

+ z2)2

The element dgq is equal to ARd¢ where ¢ is the angle with the x-axis. Thus:
ARd¢ z AR z

E(0,0,Z)=2f =25 —3
Mo (2 4 p2yz 260 (52 4 R2)2

For z « R this can be written as:

AR z Az
F000) = 0 B T 2o

Very close to the z-axis, we can write:

O0E J0E
EZ(X, Y, Z) = EZ(O,O, Z) + x_z |(0,0,Z) + y_z |(0,0,Z) + O(xzr Yz' ZZ)
0x dy
Since, there is no difference between x and —x or y and —y, it turns out that % = {;—Iif =0

Thus, to the first order in x, y, and z we have:

Az
Floy 2 =5 ke
0

Consider a Gaussian surface in the shape of a symmetric cylinder around the z-axis whose
bases are parallel with the xy-plane. The cylinder’s radius is p and its height is 2z both of
which are small quantities. By Gauss’s law we have:

Sz
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O=QE=§EJ§=fEd§+fEd§+fﬁd§
€o S Sy S3

Integration over S; and S, gives:

Az
2€9R?’

fﬁd§=f§d§=nﬁx
S S.

1 2

Integration over S5 involves the p-component for which we can write the following expansion:
0E, 5
Ep(Zip; d)) = Ep(O:p: ¢) +ZE|(O,p,¢) + O(Z )

We have 0 = % |(0,0,4) due to symmetry between z and —z, hence, E, (z, p, ¢) = E, (0, p, $)

up to the first order. Axial symmetry also implies C;—IZ’ = 0. Consequently:

f E.dS = E,(0,p,0) X 2z X 2mp
S.

3
So, Gauss’s law implies:

Az
2€yR?

0 = E, X 4mzp + 2mp?

Therefore, E, will be:

In the cylindrical coordinate we will have:

Ap 54 Az
4e,R2P T 2¢,R2”

E(p,¢,2) =

In cartesian coordinates we will have:

E(x, v,z) = (—x,—y,2z)

4€4R?

Since the ring is positively charged, the equilibrium in the x and y directions are stable, while
the equilibrium in the z-direction is unstable. The equations of motion in the x and y directions

read:
. qA
mx = qL, = —Wx
. gl
my = qE, = —
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Therefore, the frequencies of small oscillations are:

A-1 (1.5 pt)

= X -y A Az
(@) E(x,y,2) = 4€9R2 4€9R2 y+ 2€R2 z

— — , Q4
(b) Wy = Wy = 4€gR%2m

A-2.

The force in the z-direction is:

F, =qE, = Qaz __¢ Aoz + Qu Ot
z =45 = 26gR?  2€yR2 0% 2€9R? cosiitz
the equation of motion can thus be written as:
.. Q4o Qu )
= Ot
z (ZeoRzm 26oR?*m €os z
Therefore:
Q4o Qu
k= |7—— , a=—-
2€6gR?*m 2€,R?*mQ?
A-2 (0.4 pt)
_ Q4o _ Qu
ke = 2€9R%2m @ = 2€9RZ2mQ?2
A.3.

z=p() +q(t) - p+q=(k?+ aQ?cosQt)(p + q)
1. We are assuming that p is almost constant, p =~ 0.

2. According to the assumptions k? « aQ? and g < p we can ignore k2 in the first term
on the right-hand side of the equation and g in the second term.

hence, the equation of motion can be simplified as follows:

4 = paQ? cos Qt.
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As we have assumed that p is a constant, the second derivative of q is just proportional to
cos Qt which gives:

q = —pacos Qt + c;t + cy.

Since q is supposed to remain small, c; must vanish. Also ¢, = 0 because the mean value
of q is supposed to remain zero. Therefore:

q = —pacos it

A-3 (1.8 pt)
(@) §(t) = paQ? cos Ot

(b) q(t) = —pacos Qt

A-4. Using the final result for g the equation of motion for p reads:
p + paQ? cos Qt = (k? + aQ? cos Qt)(p — ap cos Qt)
Which gives:

p = k?p — ak?p cos Ot — a?0?p cos? Ot

Averaging over one period, we’ll have:
1
(cosQt) =0 ) (cos? Ot) = >

and:

a’0?
p= <k2 - >p.

In order for the motion to be stable, the expression inside the parentheses should be negative,
i.e.
a’q?
2

k
> k2 - Q>\/_E

A-4 (1.5 pt)

@ () = (kK =55 p

(b) Q> V2%

A.5. With the given data we have:
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Q}{O 5
= _— X
k /ZEORZm 2 x 10°rad/s

a=004 > Qi =7x10%rad/s

which is in the range of radio waves.

A-5 (0.4 pt)
k =2 x10%rad/s

Qin = 7 X 10°rad/s

B: Doppler Cooling

B-1. From the uncertainty principle we know:

AE X At = h

Here At is the time t and AE = hAw. So:

1
ARAw XT=h - sz;=F

B-1 (0.5 pt)

1
r=-=
T

B-2. We denote the forward and backward collision rates by s, and s_ respectively. Let us
2
proceed in the atom’s frame of reference. Ignoring the terms of the order :—2, the Doppler

effect can be written in the following form:
v
W =w (1 + Z)

Taking the atom’s velocity in the positive x-direction, we have:
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[ =a)L(1+§)
w_ =wL(1—§)

So:

v v
Sy =SL+a(wL(1 +E)_wl‘) :SL+“(ULZ

v v
S—=SL+a((‘)L(1_Z)_“)L)=SL_a(‘)LE

The momentum transfer per unit time from the oncoming photons to the atom is equal to:
Ty = sy X (—hky)
For the backward photons we have:

m_ =s_X (+hk_)

Where k, = 22%

Cc

The total momentum transferred to the atom per unit time is equal to:

v S,
n, +n_=—2hk;,— w,a (1 + —)
c awy,

Where with the approximation s;, < awy,, we will arrive at:
v
T, +1m_ = —thLE wLa

Note that as the atom is heavy, its velocity almost doesn’t change after the absorption of the
photon. Therefore, there will be almost no Doppler shifting in the re-emitted photon and hence,
on average there will be no momentum transfer to the atom during the re-emission process.

The above expression is, in fact, the force. Since v > 0, we have:
F = —Qahk})v

The same result holds for v < 0. This is in the atom’s reference frame. However, as we have
kept only up to the first order in v/c, the same result holds in the lab frame:

F = —Qahkd)v
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B-2 (1.7 pt)

v
Sy =5, taw,—
c

v
S_ =S8, —awy—
c

Ty =5y X (—hky)
n_ =s_ X (+hk_.)

F = —Qahk?)v

B-3. The atom’s momentum before the collision is zero. After the collision it will be
(assuming the photon’s momentum is in the x-direction):

Pl = flkL

After re-emitting the photon, we may have two equally likely outcomes for the final
momentum:

1. The photon is emitted in the positive x-direction which causes the atom’s momentum
to become zero

2. The photon is emitted in the negative x-direction which causes the atom’s momentum
to become: P = +2hk;,

Thus, the mean final energy is equal to:

W)—(ﬁ)—1x0+1x4ﬁ%ﬁ—h%f
T m T2 27 2m  m

This process occurs during the time . So, the input power (the power gained by the atom as a
result of this process) is equal to:

_ h%K}

P
in mt

B-3 (1.0 pt)
h2k?
Pin = mt

B.4. The output power (the power lost by the atom through collision with laser photons) can
be written as:
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Poye = F - v = —2ahkiv?

At equilibrium we should have:

22 _ Al
Pyt +Pp=0 - —— 2ahkiv? - v2 = Sam
And the temperature of this system is equal to:
1 — 1 T Al
j— = — e d =
MV T 2akg
B-4 (0.8 pt)
Pyt = —2ahkiv?
pz ="
2am
- Al
B Z(XkB
B-5. Considering the given data:
1055 x 10 3*J.s
=2x107*K

P = X ax1381x10 2J/Kx5x10 °3

B-5 (0.4 pt)

T=2x10"*K
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Marking Scheme Q2 (10 points)

Part A (5.6 pt)

A-1

(a) = — -Ax A AN N
E(x,y,2) e Ty + reure (1.0 pt)

[z-component (0.5 pt), x- and y- components (0.5 pt), wrong 1.5 pt

coefficient for each component (-0.1 pt), wrong sign for each

component (-0.2 pt)]

(b) [ QA
Wy = Wy = pySy-ym (0.5 pt)

A2 |g=—2 _ 2py

2€9R2mQ2

0.4 pt

k= [—%_ (0.2pt)

ZfoRzm

G = paQ? cos Qt (1.0 pt)

[each of the 3 approximations (0.3 pt), the final equation (0.1pt)]

q = —pacos Ot (0.8 pt) 1.8 pt

[general solution (0.4 pt), fixing the free parameters in the general
solution each (0.2 pt)]

A B = (k2 =55)p 0.2

[Correct approach (0.6 pt), Correct result (0.6 pt)]

1.5 pt
Q>\/_§ (0.3 pt) P

A-5 | k =2 x10°rad/s (0.2 pt)

0.4 pt
Qmin = 7 X 10° rad/s (0.2 pt) P

[ inappropriate number of significant figures (-0.1 pt)]

Part B (4.4 pt)

B1 |r= %(0.5 ot)
[Answers with different numerical coefficients should be considered as 0.5pt
correct answers]
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B-2 Sy = SL + a{a)LE (05 pt)

S_ =S5, — aa)LE (0.5 pt)

[correct Doppler shift each (0.3 pt), final answer each (0.2 pt)]

1.7 pt
T[+ = S+ X (_hk_l_) (0.1 pt)
m_ = s_ X (+hk_) (0.1 pt)
F = —(2ahk?)v (0.5 pt)
B-3 p=0
p = +2hk; (°->PY
[one correct answer (0.3 pt)] 1.0 pt
P, ="K (0.5 pt
in = —— (0.5p1)
B-4 | P, = —2ahkiv? (0.3 pt)
02 =
Ve = %%m (0.3 pt)
T Zakn (0.2 pt)

[Answers with different numerical coefficients should be considered as
correct answers]

B-5 |T=2x10"*K (0.4pt)

[according to the coefficient used in the part B.4, the resulting temperature 0.4 pt
might be different.]
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A. A Binary System

A-1. Assume a,and a,, are respectively, the distances of M;and M, from the center of mass:

M1a1=M2a2 _MZ _M1 . _
{a1+a2=a al—ﬁa,az—ﬁa-M—M1+M2

In the rotating coordinate system, a centrifugal potential has to be added to the gravitational

potential of the two masses:
1 ,GM
U= —szrz w = ?

GM GM 1
ol y) =— : - 2 —= w?(x* +y?)
Ja+a)?+y? Jx—a)?+y? 2

p(x,y) =— - ——E;@2+yﬂ

Jlewipe) ot (=) 4

A-1 (1.0 pt)
GM GM. 1G(M{+M.

P(x,y) = — - L TR +y?)

M
\/(x+(Miwszz)a) +y2 \/(x—ma) +y2

A-2. We set y = 0 in the previous equation, and obtain:

GM GM 1M
0(x,0) = —————7 2

oo pal - 2

We draw the diagram noting that:
1. The function has asymptotes at x = —a, and x = a, , and it tends to —co at both sides of
these asymptotes.

2. The function has three maxima which are called Lagrange points.
3. The function goes to —oo for x - oo
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A-2 (0.7 pt)

A-3. Let X = x/a, and denote the Lagrange point in the middle (between x = 0 and x = 0.75) by X,
, we have % (¥y) = 0. Using the given ratios:

GM 3 1 1
QD(??,O):T— _41 + _43 —Efz
(r+3) @-9
Letf(f)=GiM%,thenwe have to solve for f(x,) = 0. We have f(0) > 0 and f(0.5) < 0, so

the answer lies between 0 and 0.5. For the midpoint, we have f (X, = 0.25) > 0s0 0.25 < ¥, <
0.5, so by trial and error:

{f(0)>0

£(05)<0” £(0.25) >0 - 0.25 < %y < 0.5 - £(0.375) < 0 = - - 0.358 < ¥, < 0.361

X
- £(0.360) > 0 - 0.360 < %, < 0.361 — ;" = %, ~ 0.36

So, up to two significant figures the answer is 0.36.

A-3 (0.5 pt)

0 -0.36

a

A-4. The angular momentum of the system is:

MM GM GM?M?
] = paV = pa’w =—jwza2 ’F: ’—11\4 2q,
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where u is the reduced mass and V is the relative velocity of the two point masses. Taking the
logarithm of both sides we’ll have:

11. G
Inj = > lnM+ 2InM; +21In M, +1na]
For slowly-varying quantities we’ll obtain:

[ M, M, 1la
]_1_2+

J M, M, 2a

because the total mass is a constant and M, + M, = 0; therefore:

b a3 P 3a 3M1 (1 Ml) P 6 a3 ( 1 1 )
= —_ e —=——= -3 — —_—— — = — _— _——
TleM T P 2a M\ M, ™ e \or, ",

A-4 (0.6 pt)
a=-2fa (Mil—Miz)
P =—-6m g—;ﬁ(Mil—Miz)

A-5. In an infinitesimally thin ring with an inner radius of r and an outer radius r + dr, energy is

leaving at a rate of — % and entering at a rate — EME | SMiB

2r 272
M

equilibrium, the excess energy of G? dr per unit time must leave the system as radiation, so:

dr . For the ring to stay in

GM
dP = 27.123 dr = oT*2(2nrdr) = 4noT4*dr - T = (

1
GM,p )Z
8mor3

A-5 (1.0 pt)

1

r- (gt

A-6. From P = 2@ /% we’ll have:
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1
_ [P2G(Ms + Mys)]P
a= 412

Using the result of Part A.5, the temperature is:

=

=9 x 103K

1
“\8rnor3/  \oP2(Mg + Myg)

A-6 (0.5 pt)

T=9x%x103K

A.7. For the system to remain bounded, the total mechanical energy of the system must be negative:

1 GM;M 26(M; + M
E’=§M'v'2— ; 207 < ’%

. . . GM
For an isotropic explosion, we would have v' = v = ’Ttherefore:

\/G(Ml +My) Jza(m; +M,)

a

and:

A-7 (0.7 pt)

r_ [26(M1+M,)
vmaX - a

M{—M
1 _ MMy
Mlmin - 2

B. Analysis of the stability of a star

B-1. Using Newton’s law of gravity:

AnG for r'2pdr' P=Pc 4nGp.r

9= r2 3
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B-1 (0.2 pt)

ATTG P
3

B-2. Balance of forces for a differential element of volume with a surface area of 4 and thickness Ar
between radii r and r + Ar is as follows:

GM(F)p
—

xsT

AAr —ApA =0

in which M (r) is the mass of the part of the star confined within the radius r. As Ar is small, we
can write:

Gp 2 N dp(r) _,dp
([ amroear) =~ =yt

Multiplying both sides of the equation by % and taking the derivative once again, we get:

d
1,272
dr[r p

dp1 4nGr?
e p(r) =0

dr Ky

B-2 (0.6 pt)

hi(p,7) =1%p"7?

L _ 4nGr?
(1) = Ky
B-3.
[pC] = ML_3l [pC] = ML—IT_Z' [G] = M—1L3T—2
[G'p&p] = M7 LT (ML T 2™ (ML™)" = L
[ = 1
—l+n+m=0 ) 1
3l-3n—-m=1- 1 - To = G 2p?pct
—2l-2m=0 m=s
n=-1
B-3 (0.4 pt)

ro = G 2p2p;t

B-4.
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Kyp!™ d 5 du
S y—24%1 _ _
AGrix? dx [x “ dx] peu(r)
y—2
I(}/chi [xzuy_z d_u] = y i [xzuy_z d_u] = —u
AmGryx? dx dx 4mx? dx dx
d [ 5 y_zdu]+4nx2 — 0
dx xu dx y u=
B-4 (0.3 pt)
Ay (u, x) = x?u¥=2
4mrx?
A (x) =
B-5.
d du sin(v2mx
y=2 - |2 = —2muto - 1760 = —2mf() > £00) = sin(Vmx) = )
B-5 (0.6 pt)
__ sin(v2mx)
fO)=—F%
B.6.
d?u —2) rdu\* 2 /du\ 4m
e D) () oo
dx? u dx x \dx y
"0)=0 li u'(x)_ "0
u ( ) - ) xlE% x =u ( )
"(0) + 2" (0) +2E = A
- = N = —
: - y O
y~[1.64,1.70]
B-6 (0.8 pt)
vy = [1.64,1.70]

B.7.
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M(r) =f amr'2p(r’, t)dr' =f Anr'?p(r)dr’
0 0
oF P r?aF\ "
anr?p(r) = 42 p(F, t)a - % = ﬁ(@) =(1+e)3=1-3¢
o GM 1
9_72 _72_ 2
g GM ™1 =(1+4+e)“=1-2¢
. rZ
B-7 (0.9 pt)
g=g(—2e)
p=p(—3e)
B-8. we have
@ — ’*(*’ -
o7 p\g
And
p = Kp
So:
(%)
s . \OF N ", 0P
T:g— — :g—Kypy2_~
p
B-8 (0.6 pt)
d27 ap
o G—Kkypr2E
a2z 9 VP oF

B.9. Using of the results in B.7 and B.8, we have:

da* ap dp ((1—3e)r 1
O s i kyar2P — p(1— 26) — kypr-2 P (L2
az =TT K T gr =9 =26 —Kyp ( )

dp
=91 —2¢) —Kyp"? (1 =3(y — De — )

Equilibrium requires:

dp dp
— y=2_" — y-2_T —
g—Kypr oo =0=>Kyp" =22 =g

therefore:

F=ré=g(1-2¢)—g(1-3(y—1e—¢€)=gQBy—4)e
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and:
.4
=3y -4
€="0Cy -4
4G
€=— ch(3y—4)6

Stability requires that:
4
3y—4>0>y> §

and the angular velocity of the oscillations will be:

4nG
wz\/ 3pc(3y—4)

B-9 (0.6 pt)

€= —4”76’%(3)/—4)6

Ymin = §

4G pc

w = T(3]/—4)
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Marking Scheme Q3 (10 points)

Part A (5.0 pt)

o(ry) = GM, Z ~ GM, Z ~ %G(Mla:- M) 1 7)
A-1 \[(x-l-(MlI:I-ZMz)a) vt \/(x_(Mll:I-le)a) +t 1.0 pt
[Gravitational part (0.5 pt)]
[Centrifugal part (0.5 pt)]

[Correct behavior at infinity (0.1 pt)]
[Three maximums (0.3 pt)]

[Two vertical asymptotes (0.3 pt)]
A-2 0.7 pt

= =036
A-3 | [In case of obtaining correct equation but not solving it (0.2 pt)] 0.5 pt
[Obtaining the numerical result with one decimal figure (0.3 pt)]
§ = 1 _ 1t

a=—2fa (M1 Mz) (0.3 pt)

a3 1 1
A4 | P=—6m |2 p (M—1 - M—Z) (0.3 pt) 0.6 pt

[Only correct approach (conservation of momentum) (0.2 pt)]

1
7= (GMLB )Z
8mor3
[Correct approach (Energy relation) (0.5 pt)]
[Correct solution (0.5 pt)]

1.0 pt

1
[PZG(MS +MNS)]§
a =
412

(0.3 pt)

A-6 — (_500mMNsB )4 0.5 pt
T (aPZ(MS+MNs)) (0.1pY) P

T =9x10% K(0.1pt)
[If the final answer for T is correct the complete pt will be given]

E'=Zp'v'? - <0 (0.2pY

, 2G6(M]+M.
Umax = «’ ( Lll 2) (0.2 pt)
A-7 0.7 pt

v'=v (0.2pt)

GM1M,
a

’ M{—M
Mlmin = % (0.1 pt)
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Part B (5.0 pt)
B1 | g= —4”63& 0.2 pt
hi(p,7) =12p¥~2
B-2 _ 4mGr? 0.6 pt
hy(r) = Ky P
[F = D2 A Ar — apA = 0 (0.3pY)]
1 1
B-3 ro=G 2p§p§1 0.4 pt
Ay (u,x) = x?u¥=2
B-4 4rx? 0.3 pt
Ay(x) =
The answer would be correct up to a constant coefficient
B.5 fx)=4 sin(\/an) + Bcos(\/an) (0.3 pt) 0.6
- .6 pt
A=—=(02pt) & B=0(0.1pY P
1/ (0) = 0(0.1 pt)
lim % = 4"(0) (0.4 pt)
X0 % am
B-6 | Y= "3ui (0.2 pt) 0.8 pt
y~1.66 (0.1pt)
p =p(1—3¢)(0.6pt)
[p = p(1+€)%(0.4pt)]
B-7 | . 0.9 pt
g =g(1-2€)(0.3p) P
[g = g(1 +€)"%(0.2pt)]
. p
» = § — FY—2 _
B-g | T =9 kyp"" = 0.6 pt
€= —‘”TG"C By —4)e  (0.4pt)
4
Ymin = 3 (0.1 pt)
B-9 0.6 pt
w= ’MTGPC(S)/ —4) (0.1pt)
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