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A. Earth as a blackbody 
 

A-1. All the energy emitted from the surface of the Sun, will reach a sphere of radius 𝑑 , therefore: 

 

𝜎𝑇S
4. (4𝜋𝑅S

2) = (4𝜋𝑑2). 𝑆0 

𝑆0 = 𝜎𝑇S
4. (
𝑅S
𝑑
)
2

= 5.67 × 10−8
 W

m2K4
× (5.77 × 103 K)4 × (

6.96 × 108 m

1.5 × 1011 m
)

2

= 1.35 × 103
W

m2
 

 

A-1 (0.6 pt) 
 

𝑆0 = 𝜎𝑇S
4. (

𝑅S

𝑑
)
2

                                                   , Numerical value of 𝑆0 = 1.35 × 103 W/m2 

 

A-2. It is assumed that the Earth is in thermal equilibrium. Therefore, the energy it receives per unit 

time should be equal to the energy it radiates per unit time. The Earth’s cross-section intercepting 

the solar radiation at this distance has an area of 𝜋𝑅E
2 , but the Earth radiates heat from all points 

on its surface with an area of   4𝜋𝑅E
2, so:  

𝜋𝑅E
2. 𝑆0 = 4𝜋𝑅E

2𝜎𝑇E
4   → 𝑇E = (

𝑆0
4𝜎
)

1
4
= 278 K 

 

A-2 (0.6 pt) 
 

𝑇E = (
𝑆0

4𝜎
)

1

4
= √

𝑅S

2𝑑
𝑇S                                                          , Numerical value of 𝑇E = 278 K 

 

A-3. The radiation is maximum at the wavelength for which the derivative of  𝑢 with respect to 𝜆 is 

zero: 

𝑑𝑢

𝑑𝜆
=
2𝜋ℎ𝑐2

𝜆6
.

1

𝑒𝑥𝑝(
ℎ𝑐
𝜆𝑘B𝑇

) − 1
. [−5 +

ℎ𝑐

𝜆𝑘B𝑇
 
𝑒𝑥𝑝(

ℎ𝑐
𝜆𝑘B𝑇

)

𝑒𝑥𝑝(
ℎ𝑐
𝜆𝑘B𝑇

) − 1
] 

 

𝑑𝑢

𝑑𝜆
|𝜆=𝜆m = 0     ⇒        

ℎ𝑐

𝜆m𝑘𝐵𝑇
 
𝑒𝑥𝑝 (

ℎ𝑐
𝜆m𝑘B𝑇

)

𝑒𝑥𝑝 (
ℎ𝑐

𝜆m𝐾B𝑇
) − 1

= 5 

 

Defining   𝑥m ≡
ℎ𝑐

𝜆m𝑘B𝑇
   we obtain the following transcendental equation: 

 
5(1 − 𝑒−𝑥m) − 𝑥m = 0 

 



 

 

 

S1-2  
 

A-3 (0.4 pt) 
 

𝑓(𝑥) = 5(1 − 𝑒−𝑥) − 𝑥                                                                       

 

A-4. The first guess is  𝑥m
(1)
= 5 . Substituting repeatedly for 𝑥m we can continue as follows: 

𝑥m
(2)
= 5(1 − 𝑒−5) = 4.97 

𝑥m
(3)
= 5(1 − 𝑒−4.97) = 4.97 

 

Further iterations do not change the value of 𝑥m to three significant figures, so: 

 

𝜆m𝑇 =
ℎ𝑐

𝑥m𝑘B
= 𝑏 = 1240 eV ∙ nm ×

1

4.97 × 8.62 × 10−5 eVK−1
= 2.89 × 106 nm ∙ K 

 

A-4 (0.4 pt) 
 

𝑥m = {4.96,4.97}                                   , Numerical value of 𝑏 =  [2.89,2.90] × 106 nm ∙ K 

 
 

A-5. Using Wien’s displacement law and the constant 𝑏 obtained in the previous part, we can calculate 

the wavelength at which the radiation from the Sun and the Earth reaches its maximum: 

 

𝜆max
Sun =

𝑏

𝑇S
=
2.89 × 106 nm ∙ K

5.77 × 103 K
= [5.01, 5.02] × 102 nm 

 

𝜆max
Earth =

𝑏

𝑇E
=
2.89 × 106 nm ∙ K

278 K
= 1.04 × 104 nm 

 

A-5 (0.2 pt) 
 

𝜆max
Sun = [5.01, 5.02] × 102 nm                             , 𝜆max

Earth = 1.04 × 104 nm 

 

A-6. From the diagram, it can clearly be seen that  𝛾𝑢̃S(𝜆max
S ) = 𝑢(𝜆max

Earth, 𝑇E) , so we have: 

𝑢̃S(𝜆max
Sun ) = (

𝑅S
𝑑
)
2 2𝜋ℎ𝑐2

(𝜆max
Sun )

5

1

𝑒𝑥𝑝 (
ℎ𝑐

𝜆max
Sun 𝑘B𝑇S

) − 1
= (

𝑅S
𝑑
)
2 2𝜋ℎ𝑐2

(𝜆max
Sun )

5

1

𝑒𝑥𝑝 (
ℎ𝑐
𝑘B𝑏

) − 1
 

 

𝑢(𝜆max
Earth, 𝑇E) =

2𝜋ℎ𝑐2

(𝜆max
Earth)

5

1

𝑒𝑥𝑝 (
ℎ𝑐

𝜆max
Earth𝑘B𝑇E

) − 1

=
2𝜋ℎ𝑐2

(𝜆max
Earth)

5

1

𝑒𝑥𝑝 (
ℎ𝑐
𝑘B𝑏

) − 1
 

Dividing these two quantities we’ll find: 
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𝛾 = (
𝑑

𝑅S
)
2

× (
𝑇E
𝑇S
)
5

= [1.20,1.21] × 10−2 

 

A-6 (0.8 pt) 
 

𝛾 = (
𝑑

𝑅S
)
2

× (
𝑇E

𝑇S
)
5

= (
𝑑

𝑅S
)
2

× (
𝜆max
Sun

𝜆max
Earth)

5

               , Numerical value of 𝛾 = [1.20,1.21] × 10−2 

 
 

 

B. The Greenhouse Effect 
 

B-1. Both the Earth and its atmosphere are in thermal equilibrium, so one can write an equation that 

balances the input and output powers. For the Earth we have: 

 (𝜋𝑅E
2)(1 − 𝑟A)𝑆0 + (4𝜋𝑅E

2)𝜎𝑇A
4 = (4𝜋𝑅E

2)𝜎𝑇E
4, 

 
and for the atmosphere: 

 
(4𝜋𝑅E

2)𝜎𝑇E
4 = 2(4𝜋𝑅E

2)𝜎𝑇A
4. 

 

Note that the coefficient 2 on the right-hand side of the equation is due to the atmosphere 

radiating heat on both sides (above and below). Eliminating 𝑇𝐸 from the two relations we 

obtain: 

 

𝑇A = (
(1 − 𝑟A)

𝑆0
4

𝜎
)

1
4

= 2.58 × 102 K       ⇒     𝑇E = (2𝑇A
4)
1
4 = 3.07 × 102 K 

 

B-1 (1.0 pt) 
 

𝑇A = (
(1−𝑟A)

𝑆0
4

𝜎
)

1

4

                                                    , Numerical value of 𝑇𝐴 =  2.58 × 102 K 

 

𝑇E = (
(1−𝑟A)

𝑆0
2

𝜎
)

1

4

                                                    , Numerical value of 𝑇E = 3.07 × 102 K 

 

B-2. As can be seen in the figure, a fraction (1 − 𝑟A) of the solar radiation reaches the Earth’s surface 

after traversing the atmosphere. A fraction 𝑟E of this light is reflected back and reaches the 

atmosphere, where a fraction  𝑟A is reflected and returns to the Earth’s surface. This process 

repeats ad infinitum and the sum of the powers transmitted at all these instances, determines the 

albedo. Denoting the power returned to space after 𝑛 reflections by 𝑆̃𝑛, we’ll have   𝑆̃0 = 𝑟A𝑆0 and 
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the remaining power i.e. (1 − 𝑟A)𝑆0 , reaches the Earth’s surface. From this power, (1 − 𝑟A)𝑟E𝑆0  

is reflected, and a fraction 1 − 𝑟A of it is transmitted through the atmosphere to the space, hence:  

𝑆̃1 = (1 − 𝑟A)
2𝑟E𝑆0 =

(1 − 𝑟A)
2

𝑟A
 𝑟E𝑆̃0 

The power that is reflected back to the Earth by the atmosphere after (𝑛 − 1) reflections is 

𝑆̃𝑛−1 (
𝑟A

1−rA
), of which a fraction 𝑟E is again sent back towards the atmosphere on the 𝑛’th 

reflection, and the atmosphere allows a fraction 1 − 𝑟A of this reflected power to escape into the 

space, thus:  

𝑆̃𝑛 =
𝑆̃𝑛−1
1 − 𝑟A

𝑟A𝑟E  × (1 − 𝑟A) = 𝑟A𝑟E𝑆̃𝑛−1 = (𝑟A𝑟E)
𝑛−1𝑆̃1 

By adding all these terms, one obtains the power returned per unit area from the Earth-atmosphere 

system: 

𝑆̃ = ∑ 𝑆̃𝑛

∞

𝑛=0

= 𝑆̃0 + 𝑆̃1∑(𝑟A𝑟E)
𝑛−1

∞

𝑛=1

= 𝑟A𝑆0 + (1 − 𝑟A)
2𝑟E𝑆0 ×

1

1 − 𝑟A𝑟E

= [𝑟A +
(1 − 𝑟A)

2𝑟E
1 − 𝑟A𝑟E

] × 𝑆0 

Dividing by the solar constant we get the value for albedo: 

𝛼 =
𝑆̃

𝑆0
= 𝑟A +

(1 − 𝑟A)
2𝑟E

1 − 𝑟A𝑟E
= 3.13 × 10−1 

 

B-2 (1.6 pt) 
 

𝛼 = 𝑟A +
(1−𝑟A)

2𝑟E

1−𝑟A𝑟E
                                                                    , Numerical value of 𝛼 = 3.13 × 10−1 

 

B-3. Again, thermal equilibrium requires the input and output powers to be equal both for the Earth 

and for the atmosphere, the only difference being that the Earth absorbs now a fraction 1 − 𝛼 of 

the Sun’s radiation. Thus, for Earth we have: 

(4𝜋𝑅E
2)𝜖𝜎𝑇A

4 + (𝜋𝑅E
2)(1 − 𝛼)𝑆0 = (4𝜋𝑅E

2)𝜎𝑇E
4, 

and for the atmosphere: 

(4𝜋𝑅E
2)𝜖𝜎𝑇E

4 = 2(4𝜋𝑅E
2)𝜖𝜎𝑇A

4 

𝑇E = [
(1 − 𝛼)

2𝜎(2 − 𝜖)
𝑆0]

1
4
                 ,                     𝑇A = (

𝑇E
4

2
)

1
4

 

 



 

 

 

S1-5  
 

𝜖 =
[𝜎𝑇E

4 −
(1 − 𝛼)
4

𝑆0]

𝜎𝑇A
4 = 2

[𝜎𝑇E
4 −

(1 − 𝛼)
4

𝑆0]

𝜎𝑇E
4 = [8.07, 8.11] × 10−1 

 

B-3 (1.0 pt) 
 

𝑇E = [
(1−𝛼)

2𝜎(2−𝜖)
𝑆0]

1

4
                                                               , Numerical value of 𝜖 = [8.07 , 8.11] × 10−1 

 

 

B-4. 

𝑑𝑇E
𝑑𝜖

=
1

4
[
(1 − 𝛼)𝑆0
2𝜎(2 − 𝜖)

]

1
4 1

(2 − 𝜖)
   

 

𝑑𝑇E =
𝑑𝑇E
𝑑𝜖

𝜖
𝑑𝜖

𝜖
= [

4𝜎𝑇E
4

(1 − 𝛼)𝑆0
− 1]

𝑇E
4
× 0.01 =  [4.87,4.92] × 10−1                      

 

B-4 (0.8pt) 
 

𝑑𝑇E

𝑑𝜖
= 

1

4
[
(1−𝛼)𝑆0

2𝜎(2−𝜖)
]

1

4 1

(2−𝜖)
                                      , Numerical value of 𝛿𝑇E = [4.87,4.92] × 10−1 K 

 

B-5. The equations for thermal equilibrium are similar to those for Part B.3, only a non-radiative 

thermal current needs to be added. For the Earth:  

 

(𝜋𝑅E
2)(1 − 𝛼)𝑆0  + (4𝜋𝑅E

2)𝜖𝜎𝑇A
4 = (4𝜋𝑅E

2)𝜎𝑇E
4 + (4𝜋𝑅E

2)𝑘(𝑇E − 𝑇A), 
 

and for the atmosphere: 

 
(4𝜋𝑅E

2)𝜖𝜎𝑇E
4 + (4𝜋𝑅E

2)𝑘(𝑇E − 𝑇A) = 2(4𝜋𝑅E
2)𝜖𝜎𝑇A

4. 
 

After completing the calculations, we will have: 

 

𝜖 =
𝜎𝑇E

4 − (1 − 𝛼)
𝑆0
4  

𝜎(𝑇E
4 − 𝑇A

4)
= [8.47,8.52] × 10−1 

 
 

𝑘 =
𝜖𝜎(2𝑇A

4 − 𝑇E
4)

𝑇E − 𝑇A
=
(2𝑇A

4 − 𝑇E
4) × [𝜎𝑇E

4 − (1 − 𝛼)
𝑆0
4  ]

(𝑇E
4 − 𝑇A

4) × (𝑇E − 𝑇A)
= [3.57,3.66] × 10−1 W/m2K 
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B-5 (1.6pt) 
 

𝜖 = 
𝜎𝑇E

4−(1−𝛼)
𝑆0
4
 

𝜎(𝑇E
4−𝑇A

4)
                                     , Numerical value of 𝜖 = [8.47,8.52] × 10−1 

 

 

 

𝑘 =
(2𝑇A

4−𝑇E
4)×[𝜎𝑇E

4−(1−𝛼)
𝑆0
4
 ]

(𝑇E
4−𝑇A

4)×(𝑇E−𝑇A)
                  , Numerical value of 𝑘 = [3.57,3.66] × 10−1   W/m2K 

 
 

 

B-6. In order to find the change in the temperatures of the Earth and the atmosphere in terms of 𝜖 and 

𝑘, we take the logarithm of both sides of the relations before taking the derivative: 

 

𝑙𝑛 𝜖 = 𝑙𝑛 [𝜎𝑇E
4 − (1 − 𝛼)

𝑆0
4
] − 𝑙𝑛 𝜎 − 𝑙𝑛 (𝑇E

4 − 𝑇A
4) 

 

𝑙𝑛 𝑘 = 𝑙𝑛 𝜖 + 𝑙𝑛 𝜎 + 𝑙𝑛(2𝑇A
4 − 𝑇E

4) − 𝑙𝑛(𝑇E − 𝑇A) 
 

 

1

𝜖
=  

4𝜎𝑇E
3 𝑑𝑇E
𝑑𝜖

𝜎𝑇E
4 − (1 − 𝛼)

𝑆0
4

−
4𝑇E

3 𝑑𝑇E
𝑑𝜖

− 4𝑇A
3 𝑑𝑇A
𝑑𝜖

𝑇E
4 − 𝑇A

4   

 

0 =
1

𝜖
+
8𝑇A

3 𝑑𝑇A
𝑑𝜖

− 4𝑇E
3 𝑑𝑇E
𝑑𝜖

2𝑇A
4 − 𝑇E

4 −

𝑑𝑇E
𝑑𝜖

−
𝑑𝑇A
𝑑𝜖

𝑇E − 𝑇A
 

 

𝜖 [
1

𝑇E − 𝑇A
+

4𝑇E
3

2𝑇A
4 − 𝑇E

4]
𝑑𝑇E
𝑑𝜖

 = 1 + 𝜖 [
8𝑇A

3

2𝑇A
4 − 𝑇E

4 +
1

𝑇E − 𝑇A
]
𝑑𝑇A
𝑑𝜖

 

 
 

1 + 𝜖 [
4𝑇E

3

𝑇E
4 − 𝑇A

4 −
4𝜎𝑇E

3

𝜎𝑇E
4 − (1 − 𝛼)

𝑆0
4

]
𝑑𝑇E
𝑑𝜖

 =
4𝑇A

3

𝑇E
4 − 𝑇A

4 𝜖
𝑑𝑇A
𝑑𝜖

 

 

Solving this set of linear equations and substituting 𝜖 in B-5, we find: 
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𝑑𝑇E
𝑑𝜖

=

[
𝜎(𝑇E

4 − 𝑇A
4)

𝜎𝑇E
4 − (1 − 𝛼)

𝑆0
4  
] [1 + (

𝑇E
4 − 𝑇A

4

4𝑇A
3 ) [

8𝑇A
3

2𝑇A
4 − 𝑇E

4 +
1

𝑇E − 𝑇A
]]

[
1

𝑇E − 𝑇A
+

4𝑇E
3

2𝑇A
4 − 𝑇E

4] − (
𝜎𝑇A

4 − (1 − 𝛼)
𝑆0
4

𝜎𝑇E
4 − (1 − 𝛼)

𝑆0
4

) (
𝑇E
𝑇A
)
3

[
8𝑇A

3

2𝑇A
4 − 𝑇E

4 +
1

𝑇E − 𝑇A
]

 

 

𝜖
𝑑𝑇E
𝑑𝜖

=

1 + (
𝑇E
4 − 𝑇A

4

4𝑇A
3 ) [

8𝑇A
3

2𝑇A
4 − 𝑇E

4 +
1

𝑇E − 𝑇𝐴
]

[
1

𝑇E − 𝑇A
+

4𝑇E
3

2𝑇A
4 − 𝑇E

4] − (
𝜎𝑇A

4 − (1 − 𝛼)
𝑆0
4

𝜎𝑇E
4 − (1 − 𝛼)

𝑆0
4

) (
𝑇E
𝑇A
)
3

[
8𝑇A

3

2𝑇A
4 − 𝑇E

4 +
1

𝑇E − 𝑇A
]

 

 

𝑑𝑇E = 𝜖
𝑑𝑇E
𝑑𝜖

𝑑𝜖

𝜖
= [5.21 , 5.28] × 10−1 K  

 
 

B-6 (1.0pt) 
 

 

(a)       

{
 
 

 
 𝜖 [

1

𝑇E−𝑇A
+

4𝑇E
3

2𝑇A
4−𝑇E

4]
𝑑𝑇E
𝑑𝜖
 = 1 + 𝜖 [

8𝑇A
3

2𝑇A
4−𝑇E

4 +
1

𝑇E−𝑇A
]
𝑑𝑇A
𝑑𝜖

1 + 𝜖 [
4𝑇E

3

𝑇E
4−𝑇A

4 −
4𝜎𝑇E

3

𝜎𝑇E
4−(1−𝛼)

𝑆0
4

]
𝑑𝑇E
𝑑𝜖
 =

4𝑇A
3

𝑇E
4−𝑇A

4 𝜖
𝑑𝑇A
𝑑𝜖

 

   

 
 
 

 (b) 𝛿𝑇E = [5.21 , 5.28] × 10−1 K 
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Marking Scheme Q1 (10 points) 

Part A (3.0 pt)                      If the final answer is written then the complete point will be achieved 

A-1 
𝑆0 = 𝜎𝑇S

4. (
𝑅S

𝑑
)
2

 (0.4pt), 
[Realizing energy conservation (0.1pt)] 
Numerical value of 𝑆0 = 1.35 × 103 W/m2 (0.2pt)  
[more than 4 significant figures (0.1pt)] 

0.6 pt 

A-2 
𝑇E = (

𝑆0

4𝜎
)

1

4
= √

𝑅S

2𝑑
𝑇S (0.4pt), 

[realizing energy balance (0.1pt)] 
Numerical value of 𝑇E = 278  K (0.2pt) 
[more than 4 significant figures (0.1pt)] 

0.6 pt 

A-3 𝑓(𝑥) = 5(1 − 𝑒−𝑥) − 𝑥 0.4 pt 
A-4 𝑥m = {4.96,4.97} (0.3 pt), 

[more than 4 significant figures (0.2pt)] 
Numerical value of 𝑏 =  [2.89,2.90] × 106 nm.K (0.1 pt) 
[more than 4 significant figures (0.1pt)] 

0.4 pt 

A-5 𝜆max
Sun = [5.01, 5.02] × 102 nm(0.1 pt), 
𝜆max
Earth = 1.04 × 104 nm(0.1 pt) 

[more than 4 significant figures (0.1pt)] 

0.2 pt 

A-6 
𝛾 = (

𝑑

𝑅S
)
2

× (
𝑇E

𝑇S
)
5

= (
𝜆S

𝜆E
)
5

× (
𝑑

𝑅S
)
2

  (0.6 pt), 

[realizing 𝑢̃S = (
𝑅S

𝑑
)
2
𝑢S(𝜆)(0.3pt)]  

Numerical value of 𝛾 = [1.20,1.21] × 10−2 (0.2 pt) 
[more than 4 significant figures (0.1pt)] 

0.8 pt 

 

Part B (7.0 pt) 

B-1 
𝑇𝐴 = (

(1−𝑟A)
𝑆0
4

𝜎
)

1

4

                                 

 𝑇E = (
(1−𝑟A)

𝑆0
2

𝜎
)

1

4

 

Two correct expressions (0.8 pt) 
[One correct expression (0.6 pt)] 
[no correct expression: for each energy balance relation (0.2pt)] 
Numerical value of 𝑇A =  2.58 × 102 K  (0.1 pt) 
Numerical value of 𝑇E = 3.07 × 102 K  (0.1 pt) 
[more than 4 significant figures (0.1pt)] 

1.0 pt 

B-2 𝛼 = 𝑟A +
(1−𝑟A)

2𝑟E

1−𝑟A𝑟E
   (1.4pt) 

[𝑆̃0=𝑟A𝑆0 (0.1 pt) 

𝑆̃1 = (1 − 𝑟A)
2𝑟E𝑆0 =

(1−𝑟A)
2

𝑟A
 𝑟E𝑆̃0  (0.3 pt)    

1.6 pt 
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𝑆̃𝑛 =
𝑆̃𝑛−1

1−𝑟𝐴
𝑟A𝑟E  × (1 − 𝑟A) = 𝑟A𝑟E𝑆̃𝑛−1 = (𝑟A𝑟E)

𝑛−1𝑆̃1   (0.5 pt) 

𝑆̃ = ∑ 𝑆̃𝑛
∞
𝑛=0 = 𝑆̃0 + 𝑆̃1∑ (𝑟A𝑟E)

𝑛−1∞
𝑛=1       (0.3 pt)] 

Numerical value of 𝛼 = 3.13 × 10−1 (0.2pt) 
[more than 4 significant figures (0.1pt)] 

B-3 
𝑇E = [

(1−𝛼)

2𝜎(2−𝜖)
𝑆0]

1

4   (0.6pt) 

Numerical value of 𝜖 = [8.07, 8.11] × 10−1 (0.4pt) 
[wrong numerical value: correct expression for 𝜖 (0.2pt)] 
[more than 4 significant figures (0.3pt)] 

1.0 pt 

B-4 𝑑𝑇E

𝑑𝜖
= 

1

4
[
(1−𝛼)𝑆0

2𝜎(2−𝜖)
]

1

4 1

(2−𝜖)
 (0.6 pt), 

Numerical value of 𝛿𝑇E = [4.87,4.92] × 10−1 K (0.2pt) 
[more than 4 significant figures (0.1pt)] 

0.8 pt 

B-5 
𝜖 = 

𝜎𝑇E
4−(1−𝛼)

𝑆0
4
 

𝜎(𝑇E
4−𝑇A

4)
    (0.6pt) 

 

𝑘 =
(2𝑇A

4−𝑇E
4)×[𝜎𝑇E

4−(1−𝛼)
𝑆0
4
 ]

(𝑇E
4−𝑇A

4)×(𝑇E−𝑇A)
      (0.6pt) 

[Correct relations for balance of energy (0.3+0.3 pt)] 
Numerical value of 𝜖 = [8.47,8.52] × 10−1 (0.2pt) 
Numerical value of 𝑘 = [3.57,3.66] × 10−1   W/m2K  (0.2pt) 
[more than 4 significant figures for each one (0.1pt)] 

1.6 pt 

B-6 (a) (0.4+0.4) 

{
 
 

 
 𝜖 [

1

𝑇E−𝑇A
+

4𝑇E
3

2𝑇A
4−𝑇E

4]
𝑑𝑇E
𝑑𝜖
 = 1 + 𝜖 [

8𝑇A
3

2𝑇A
4−𝑇E

4 +
1

𝑇E−𝑇A
]
𝑑𝑇A
𝑑𝜖

1 + 𝜖 [
4𝑇E

3

𝑇E
4−𝑇A

4 −
4𝜎𝑇E

3

𝜎𝑇E
4−(1−𝛼)

𝑆0
4

]
𝑑𝑇E
𝑑𝜖
 =

4𝑇A
3

𝑇E
4−𝑇A

4 𝜖
𝑑𝑇A
𝑑𝜖

 (0.6 pt) 

 
(b) 𝛿𝑇E = [5.21 , 5.28] × 10−1K (0.2pt) 
[more than 4 significant figures for each one (0.1pt)] 

1.0 pt 
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A: Paul Trap 
 

A-1. Due to the symmetry, on the 𝑧-axis the only non-zero component of electric field is in 

the 𝑧-direction. So: 

𝐸ሬԦሺ0,0, 𝑧ሻ = 𝐸𝑧ሺ0,0, 𝑧ሻ 𝑧Ƹ = 𝑧Ƹ  න
𝑑𝑞

4𝜋𝜖0

1

ሺ𝑅2 + 𝑧2ሻ
×

𝑧

ሺ𝑅2 + 𝑧2ሻ
1
2

        

The element 𝑑𝑞 is equal to 𝜆𝑅𝑑𝜙 where 𝜙 is the angle with the 𝑥-axis. Thus:  

𝐸ሺ0,0, 𝑧ሻ = 𝑧Ƹ න
𝜆𝑅𝑑𝜙

4𝜋𝜖0

𝑧

ሺ𝑧2 + 𝑅2ሻ
3
2

= 𝑧Ƹ
𝜆𝑅

2𝜖0

𝑧

ሺ𝑧2 + 𝑅2ሻ
3
2

  

For 𝑧 ≪ 𝑅 this can be written as: 

𝐸𝑧ሺ0,0, 𝑧ሻ =
𝜆𝑅

2𝜖0

𝑧

𝑅3
=

𝜆𝑧

2𝜖0𝑅2
 

Very close to the 𝑧-axis, we can write: 

𝐸𝑧ሺ𝑥, 𝑦, 𝑧ሻ = 𝐸𝑧ሺ0,0, 𝑧ሻ + 𝑥
𝜕𝐸𝑧

𝜕𝑥
ȁሺ0,0,𝑧ሻ + 𝑦

𝜕𝐸𝑧

𝜕𝑦
ȁሺ0,0,𝑧ሻ + 𝑂ሺ𝑥2, 𝑦2, 𝑧2ሻ 

Since, there is no difference between 𝑥 and −𝑥 or 𝑦 and −𝑦, it turns out that 
𝜕𝐸𝑧

𝜕𝑥
=

𝜕𝐸𝑧

𝜕𝑦
= 0. 

Thus, to the first order in 𝑥, 𝑦, and 𝑧 we have: 

𝐸𝑧ሺ𝑥, 𝑦, 𝑧ሻ =
𝜆𝑧

2𝜖0𝑅2
 

Consider a Gaussian surface in the shape of a symmetric cylinder around the 𝑧-axis whose 

bases are parallel with the 𝑥𝑦-plane. The cylinder’s radius is 𝜌 and its height is 2𝑧 both of 

which are small quantities. By Gauss’s law we have: 

 

𝑆1                                

                                     

𝑆3                                          

 𝑆2                             
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0 =
𝑄𝑖𝑛

𝜖0
= ර 𝐸ሬԦ. 𝑑𝑆Ԧ = න 𝐸ሬԦ. 𝑑𝑆Ԧ

𝑆1

+ න 𝐸ሬԦ. 𝑑𝑆Ԧ
𝑆2

+ න 𝐸ሬԦ. 𝑑𝑆Ԧ
𝑆3

 

Integration over 𝑆1 and 𝑆2 gives:  

න 𝐸ሬԦ. 𝑑𝑆Ԧ
𝑆1

= න 𝐸ሬԦ. 𝑑𝑆Ԧ
𝑆2

= 𝜋𝜌2 ×
𝜆𝑧

2𝜖0𝑅2
 . 

Integration over 𝑆3 involves the 𝜌-component for which we can write the following expansion:  

𝐸𝜌ሺ𝑧, 𝜌, 𝜙ሻ = 𝐸𝜌ሺ0, 𝜌, 𝜙ሻ + 𝑧
𝜕𝐸𝜌

𝜕𝑧
ȁሺ0,𝜌,𝜙ሻ + 𝑂ሺ𝑧2ሻ 

We have 0 =
𝜕𝐸𝜌

𝜕𝑧
ȁሺ0,𝜌,𝜙ሻ due to symmetry between 𝑧 and −𝑧, hence, 𝐸𝜌ሺ𝑧, 𝜌, 𝜙ሻ = 𝐸𝜌ሺ0, 𝜌, 𝜙ሻ  

up to the first order. Axial symmetry also implies 
𝑑𝐸𝜌

𝑑𝜙
= 0. Consequently: 

න 𝐸ሬԦ. 𝑑𝑆Ԧ
𝑆3

= 𝐸𝜌ሺ0, 𝜌, 0ሻ × 2𝑧 × 2𝜋𝜌 

So, Gauss’s law implies: 

0 = 𝐸𝜌 × 4𝜋𝑧𝜌 + 2𝜋𝜌2
𝜆𝑧

2𝜖0𝑅2
 

Therefore, 𝐸𝜌 will be: 

𝐸𝜌 = −
𝜆𝜌

4𝜖0𝑅2
 

In the cylindrical coordinate we will have: 

𝐸ሬԦሺ𝜌, 𝜙, 𝑧ሻ = −
𝜆𝜌

4𝜖0𝑅2
𝜌ො +

𝜆𝑧

2𝜖0𝑅2
𝑧Ƹ 

In cartesian coordinates we will have: 

𝐸ሬԦሺ𝑥, 𝑦, 𝑧ሻ =
𝜆

4𝜖0𝑅2
ሺ−𝑥, −𝑦, 2𝑧ሻ 

Since the ring is positively charged, the equilibrium in the 𝑥 and 𝑦 directions are stable, while 

the equilibrium in the 𝑧-direction is unstable. The equations of motion in the 𝑥 and 𝑦 directions 

read: 

𝑚𝑥ሷ = 𝑞𝐸𝑥 = −
𝑞𝜆

4𝜖0𝑅2
𝑥 

𝑚𝑦ሷ = 𝑞𝐸𝑦 = −
𝑞𝜆

4𝜖0𝑅2
𝑦 
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Therefore, the frequencies of small oscillations are: 

𝜔𝑥
2 = 𝜔𝑦

2 =
𝑞𝜆

4𝜖0𝑅2𝑚
 

 

A-1 (1.5 pt) 
 

(a) 𝐸ሬԦሺ𝑥, 𝑦, 𝑧ሻ =
−𝜆𝑥

4𝜖0𝑅2 𝑥ො +
−𝜆𝑦

4𝜖0𝑅2 𝑦ො +
𝜆𝑧

2𝜖0𝑅2 𝑧Ƹ  

(b) 𝜔𝑥 = 𝜔𝑦 = √
𝑄𝜆

4𝜖0𝑅2𝑚
                   

                                                                      

 

A-2. 

The force in the 𝑧-direction is: 

𝐹𝑧 = 𝑞𝐸𝑧 =
𝑄𝜆𝑧

2𝜖0𝑅2
=

𝑄

2𝜖0𝑅2
 𝜆0𝑧 +

𝑄𝑢

2𝜖0𝑅2
cos Ω𝑡 𝑧 

the equation of motion can thus be written as: 

𝑧ሷ = ൬
𝑄𝜆0

2𝜖0𝑅2𝑚
+

𝑄𝑢

2𝜖0𝑅2𝑚
cos Ω𝑡൰ 𝑧 

Therefore: 

𝑘 = ඨ
𝑄𝜆0

2𝜖0𝑅2𝑚
                   ,                   𝑎 =

𝑄𝑢

2𝜖0𝑅2𝑚Ω2
 

A-2 (0.4 pt) 
 

𝑘 =  √
𝑄𝜆0

2𝜖0𝑅2𝑚
                                                                    , 𝑎 = 

𝑄𝑢

2𝜖0𝑅2𝑚Ω2
                     

 

A.3. 

𝑧 = 𝑝ሺ𝑡ሻ + 𝑞ሺ𝑡ሻ            →              𝑝ሷ + 𝑞ሷ = ሺ𝑘2 + 𝑎Ω2 cos Ω𝑡ሻሺ𝑝 + 𝑞ሻ 

1. We are assuming that 𝑝 is almost constant, 𝑝ሷ ≃ 0. 

2. According to the assumptions 𝑘2 ≪ 𝑎Ω2 and 𝑞 ≪ 𝑝 we can ignore 𝑘2 in the first term 

on the right-hand side of the equation and 𝑞 in the second term.  

hence, the equation of motion can be simplified as follows:  

𝑞ሷ = 𝑝𝑎Ω2 cos Ω𝑡. 
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As we have assumed that 𝑝 is a constant, the second derivative of 𝑞 is just proportional to 

cos Ω𝑡 which gives:  

𝑞 = −𝑝𝑎 cos Ω𝑡 + 𝑐1𝑡 + 𝑐2. 

Since 𝑞 is supposed to remain small, 𝑐1 must vanish. Also 𝑐2 = 0 because the mean value 

of 𝑞 is supposed to remain zero. Therefore: 

𝑞 = −𝑝𝑎 cos Ω𝑡 

A-3 (1.8 pt) 
 

(a) 𝑞ሷ ሺ𝑡ሻ = 𝑝𝑎Ω2 cos Ω𝑡                                                              

 

(b) 𝑞ሺ𝑡ሻ = −𝑝𝑎 cos Ω𝑡                                                                     

 

A-4. Using the final result for 𝑞 the equation of motion for 𝑝 reads: 

𝑝ሷ + 𝑝𝑎Ω2 cos Ω𝑡 = ሺ𝑘2 + 𝑎Ω2 cos Ω𝑡ሻሺ𝑝 − 𝑎𝑝 cos Ω𝑡ሻ 

Which gives: 

𝑝ሷ = 𝑘2𝑝 − 𝑎𝑘2𝑝 cos Ω𝑡 − 𝑎2Ω2𝑝 cos2 Ω𝑡 

Averaging over one period, we’ll have: 

cosۃ Ω𝑡ۄ = cos2ۃ               ,               0 Ω𝑡ۄ =
1

2
 

and: 

𝑝ሷ = ቆ𝑘2 −
𝑎2Ω2

2
ቇ 𝑝. 

In order for the motion to be stable, the expression inside the parentheses should be negative, 

i.e. 

𝑎2Ω2

2
> 𝑘2           →              Ω > ξ2

𝑘

𝑎
 

A-4 (1.5 pt) 
 

(a) 𝑝ሷሺ𝑡ሻ = (𝑘2 −
𝑎2Ω2

2
) 𝑝            

 

(b) Ω > ξ2
𝑘

𝑎
                        

 

A.5. With the given data we have: 
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𝑘 = ඨ
𝑄𝜆0

2𝜖0𝑅2𝑚
= 2 × 105 rad/s 

𝑎 = 0.04     →      Ωmin = 7 × 106 rad/s 

which is in the range of radio waves.  

A-5 (0.4 pt) 
 

𝑘 = 2 × 105 rad/s                                                        

 

Ωmin = 7 × 106rad/s     

 

 

 

 

B: Doppler Cooling 
 

 

B-1. From the uncertainty principle we know: 

Δ𝐸 × Δ𝑡 ≃ ℏ 

Here Δ𝑡 is the time 𝜏 and Δ𝐸 = ℏΔ𝜔. So: 

ℏΔ𝜔 × 𝜏 ≃ ℏ   →      Δ𝜔 ≃
1

𝜏
= Γ 

 

B-1 (0.5 pt) 
 

Γ =
1

𝜏
 

 

B-2. We denote the forward and backward collision rates by 𝑠+ and 𝑠− respectively. Let us 

proceed in the atom’s frame of reference. Ignoring the terms of the order 
𝑣2

𝑐2
, the Doppler 

effect can be written in the following form: 

𝜔′ = 𝜔 (1 +
𝑣

𝑐
) 

Taking the atom’s velocity in the positive 𝑥-direction, we have: 
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𝜔+ = 𝜔L (1 +
𝑣

𝑐
) 

𝜔− = 𝜔L (1 −
𝑣

𝑐
) 

So: 

𝑠+ = 𝑠L + 𝛼 (𝜔L (1 +
𝑣

𝑐
) − 𝜔L) = 𝑠L + 𝛼𝜔L

𝑣

𝑐
  

𝑠− = 𝑠𝐿 + 𝛼 (𝜔L (1 −
𝑣

𝑐
) − 𝜔L) = 𝑠L − 𝛼𝜔L

𝑣

𝑐
 

The momentum transfer per unit time from the oncoming photons to the atom is equal to: 

𝜋+ = 𝑠+ × ሺ−ℏ𝑘+ሻ 

For the backward photons we have: 

𝜋− = 𝑠− × ሺ+ℏ𝑘−ሻ 

Where 𝑘± =
ℏ𝜔±

𝑐
.  

The total momentum transferred to the atom per unit time is equal to: 

𝜋+ + 𝜋− = −2ℏ𝑘L

𝑣

𝑐
 𝜔L𝛼 ൬1 +

𝑠L

𝛼𝜔L
൰ 

Where with the approximation 𝑠L ≪ 𝛼𝜔L, we will arrive at: 

𝜋+ + 𝜋− = −2ℏ𝑘L

𝑣

𝑐
 𝜔L𝛼 

Note that as the atom is heavy, its velocity almost doesn’t change after the absorption of the 

photon. Therefore, there will be almost no Doppler shifting in the re-emitted photon and hence, 

on average there will be no momentum transfer to the atom during the re-emission process. 

The above expression is, in fact, the force. Since 𝑣 > 0, we have: 

𝐹 = −ሺ2𝛼ℏ𝑘L
2ሻ𝑣 

The same result holds for 𝑣 < 0. This is in the atom’s reference frame. However, as we have 

kept only up to the first order in 𝑣/𝑐, the same result holds in the lab frame: 

𝐹 = −ሺ2𝛼ℏ𝑘L
2ሻ𝑣 
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B-2 (1.7 pt) 
 

𝑠+ = 𝑠𝐿 + 𝛼𝜔L

𝑣

𝑐
 

𝑠− = 𝑠𝐿 − 𝛼𝜔L

𝑣

𝑐
 

𝜋+ = 𝑠+ × ሺ−ℏ𝑘+ሻ 

𝜋− = 𝑠− × ሺ+ℏ𝑘−ሻ 

𝐹 = −ሺ2𝛼ℏ𝑘L
2ሻ𝑣 

 

B-3. The atom’s momentum before the collision is zero. After the collision it will be 

(assuming the photon’s momentum is in the 𝑥-direction): 

𝑃1 = ℏ𝑘L 

After re-emitting the photon, we may have two equally likely outcomes for the final 

momentum: 

1. The photon is emitted in the positive 𝑥-direction which causes the atom’s momentum 

to become zero 

2. The photon is emitted in the negative 𝑥-direction which causes the atom’s momentum 

to become: 𝑃f = +2ℏ𝑘L 

Thus, the mean final energy is equal to:   

ۄ𝐸fۃ = ۃ
𝑃f

2

2𝑚
ۄ =

1

2
× 0 +

1

2
×

4ℏ2𝑘L
2

2𝑚
=

ℏ2𝑘L
2

𝑚
 

This process occurs during the time 𝜏. So, the input power (the power gained by the atom as a 

result of this process) is equal to: 

𝑃in =
ℏ2𝑘L

2

𝑚𝜏
 

 

B-3 (1.0 pt) 
 

𝑃in =
ℏ2𝑘L

2

𝑚𝜏
 

 

 

B.4. The output power (the power lost by the atom through collision with laser photons) can 

be written as: 
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𝑃out = 𝐹 ∙ 𝑣 = −2𝛼ℏ𝑘L
2𝑣2 

At equilibrium we should have: 

𝑃out + 𝑃in = 0     →         
ℏ2𝑘L

2

𝑚𝜏
= 2𝛼ℏ𝑘L

2𝑣2തതത           →           𝑣2തതത =
ℏΓ

2𝛼𝑚
 

And the temperature of this system is equal to: 

1

2
𝑚𝑣2തതത =

1

2
𝑘B𝑇         →          𝑇 =

ℏΓ

2𝛼𝑘B
 

 

B-4 (0.8 pt) 
 

𝑃out = −2𝛼ℏ𝑘L
2𝑣2                                                                       

 

𝑣2തതത =
ℏΓ

2𝛼𝑚
                  

 

𝑇 =
ℏΓ

2𝛼𝑘B
 

 

B-5. Considering the given data: 

𝑇 =
1 055 × 10 34 J.s

2 × 4 × 1 381 × 10 23 J/K ×5 × 10 9 s
= 2 × 10−4 K 

B-5 (0.4 pt) 
 

𝑇 = 2 × 10−4 K 
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Marking Scheme Q2 (10 points) 

Part A (5.6 pt) 

A-1   
(a) 𝐸⃗ (𝑥, 𝑦, 𝑧) =

−𝜆𝑥

4𝜖0𝑅2 𝑥̂ +
−𝜆𝑦

4𝜖0𝑅2 𝑦̂ +
𝜆𝑧

2𝜖0𝑅2 𝑧̂   (1.0 pt) 

[z-component (0.5 pt), x- and y- components (0.5 pt), wrong 
coefficient for each component (-0.1 pt), wrong sign for each 
component (-0.2 pt)] 

 
 

1.5 pt 

(b) 
𝜔𝑥 = 𝜔𝑦 = √

𝑄𝜆

4𝜖0𝑅2𝑚
    (0.5 pt) 

 
 

A-2 𝑎 = 
𝑄𝑢

2𝜖0𝑅2𝑚Ω2     (0.2 pt)  

𝑘 =  √
𝑄𝜆0

2𝜖0𝑅2𝑚
     (0.2 pt) 

0.4 pt 

A-3  

𝑞̈ = 𝑝𝑎Ω2 cos Ω𝑡  (1.0 pt) 

[each of the 3 approximations (0.3 pt), the final equation (0.1pt)] 

𝑞 = −𝑝𝑎 cosΩ𝑡 (0.8 pt)   

[general solution (0.4 pt), fixing the free parameters in the general 

solution each (0.2 pt)] 

 
 
 

1.8 pt 

A-4 𝑝̈(𝑡) = (𝑘2 −
𝑎2Ω2

2
) 𝑝   (1.2 pt) 

[Correct approach (0.6 pt), Correct result (0.6 pt)] 

Ω > √2
𝑘

𝑎
   (0.3 pt) 

 

1.5 pt 

A-5 𝑘 = 2 × 105 rad/s (0.2 pt) 
 
Ωmin ≃ 7 × 106 rad/s (0.2 pt) 
[ inappropriate number of significant figures (-0.1 pt)] 

0.4 pt 

 

 Part B (4.4 pt) 

B-1 Γ =
1

𝜏
 (0.5 pt) 

[Answers with different numerical coefficients should be considered as 
correct answers] 

0.5 pt 
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B-2 𝑠+ = 𝑠L + 𝛼𝜔L
𝑣

𝑐
   (0.5 pt) 

𝑠− = 𝑠L − 𝛼𝜔L
𝑣

𝑐
   (0.5 pt) 

[correct Doppler shift each (0.3 pt), final answer each (0.2 pt)]  

𝜋+ = 𝑠+ × (−ℏ𝑘+) (0.1 pt) 

𝜋− = 𝑠− × (+ℏ𝑘−) (0.1 pt) 

𝐹 = −(2𝛼ℏ𝑘L
2)𝑣  (0.5 pt) 

1.7 pt 

B-3 
{

𝑝 = 0
𝑝 = +2ℏ𝑘L

 (0.5 pt) 

[one correct answer (0.3 pt)] 

𝑃in =
ℏ2𝑘L

2

𝑚𝜏
   (0.5 pt) 

1.0 pt 

B-4  𝑃out = −2𝛼ℏ𝑘L
2𝑣2 (0.3 pt) 

𝑣2̅̅ ̅ =
ℏΓ

2𝛼𝑚
 (0.3 pt) 

𝑇 =
ℏΓ

2𝛼𝑘B
 (0.2 pt) 

[Answers with different numerical coefficients should be considered as 
correct answers] 

0.8 pt 

B-5 𝑇 = 2 × 10−4 K  (0.4 pt) 
[according to the coefficient used in the part B.4, the resulting temperature 
might be different.]  

0.4 pt 
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A. A Binary System 
 

A-1. Assume 𝑎1and 𝑎2, are respectively, the distances of 𝑀1and 𝑀2 from the center of mass: 

{
𝑀1𝑎1 = 𝑀2𝑎2
𝑎1 + 𝑎2 = 𝑎

→ 𝑎1 =
𝑀2
𝑀
𝑎  , 𝑎2 =

𝑀1
𝑀
𝑎 ∶ 𝑀 = 𝑀1 +𝑀2 

In the rotating coordinate system, a centrifugal potential has to be added to the gravitational 

potential of the two masses: 

𝑈 = −
1

2
𝜔2𝑟2                 𝜔 = √

𝐺𝑀

𝑎3
 

𝜑(𝑥, 𝑦) = −
𝐺𝑀1

√(𝑥 + 𝑎1)
2 + 𝑦2

−
𝐺𝑀2

√(𝑥 − 𝑎2)
2 + 𝑦2

−
1

2
 𝜔2(𝑥2 + 𝑦2) 

 

𝜑(𝑥, 𝑦) = −
𝐺𝑀1

√(𝑥 +
𝑀2
𝑀
𝑎)

2

+ 𝑦2

−
𝐺𝑀2

√(𝑥 −
𝑀1
𝑀
𝑎)

2

+ 𝑦2

−
1

2

𝐺𝑀

𝑎3
(𝑥2 + 𝑦2) 

 

A-1 (1.0 pt) 
 

𝜑(𝑥, 𝑦) = −
𝐺𝑀1

√(𝑥+
𝑀2

(𝑀1+𝑀2)
𝑎)

2
+𝑦2

−
𝐺𝑀2

√(𝑥−
𝑀1

(𝑀1+𝑀2)
𝑎)

2
+𝑦2

−
1

2

𝐺(𝑀1+𝑀2)

𝑎3
(𝑥2 + 𝑦2)                                                                      

 

A-2. We set 𝑦 = 0 in the previous equation, and obtain: 

𝜑(𝑥, 0) = −
𝐺𝑀1

|𝑥 +
𝑀2
𝑀 𝑎|

−
𝐺𝑀2

|𝑥 −
𝑀1
𝑀 𝑎|

−
1

2

𝐺𝑀

𝑎3
𝑥2 

We draw the diagram noting that: 

1. The function has asymptotes at 𝑥 = −𝑎1 and 𝑥 = 𝑎2 , and it tends to −∞ at both sides of 

these asymptotes.  

2. The function has three maxima which are called Lagrange points.  

3. The function goes to −∞ for 𝑥 → ±∞ 
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A-2 (0.7 pt) 
 

 
 

 

A-3. Let  𝑥̅ = 𝑥/𝑎, and denote the Lagrange point in the middle (between 𝑥̅ = 0 and  𝑥̅ = 0.75) by 𝑥̅0 

, we have 
𝑑𝜑

𝑑𝑥̅
(𝑥̅0) = 0. Using the given ratios:  

𝜑(𝑥̅, 0) =
𝐺𝑀

𝑎
[−

3
4

(𝑥̅ +
1
4
)
+

1
4

(𝑥̅ −
3
4
)
−
1

2
 𝑥̅2 ] 

Let 𝑓(𝑥̅) =
𝑎

𝐺𝑀

𝑑𝜑

𝑑𝑥̅
 , then we have to solve for 𝑓(𝑥̅0) = 0 . We have 𝑓(0) > 0 and 𝑓(0.5) < 0, so 

the answer lies between 0 and 0.5. For the midpoint, we have 𝑓(𝑥̅0 = 0.25) > 0 so  0.25 < 𝑥̅0 <

0.5 , so by trial and error: 

{
𝑓(0) > 0

𝑓(0.5) < 0
→ 𝑓(0.25) > 0 → 0.25 < 𝑥̅0 < 0.5 → 𝑓(0.375) < 0 → ⋯ → 0.358 < 𝑥̅0 < 0.361

→ 𝑓(0.360) > 0 → 0.360 < 𝑥̅0 < 0.361 →
𝑥0
𝑎
= 𝑥̅0 ≈ 0.36 

So, up to two significant figures the answer is 0.36. 

 

A-3 (0.5 pt) 
 
𝑥0

𝑎
= 0.36                                                                         

 

A-4. The angular momentum of the system is: 

𝐽 = 𝜇𝑎𝑉 = 𝜇𝑎2𝜔 =
𝑀1𝑀2

𝑀
𝑎2√

𝐺𝑀

𝑎3
= √

𝐺𝑀1
2𝑀2

2

𝑀
𝑎, 
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where 𝜇 is the reduced mass and 𝑉 is the relative velocity of the two point masses. Taking the 

logarithm of both sides we’ll have: 

ln 𝐽 =
1

2
[ln

𝐺

𝑀
+ 2 ln𝑀1 + 2 ln𝑀2 + ln𝑎] 

For slowly-varying quantities we’ll obtain: 

𝐽̇

𝐽
=
𝑀̇1
𝑀1

+
𝑀̇2
𝑀2

+
1

2

𝑎̇

𝑎
 

because the total mass is a constant and 𝑀1̇ + 𝑀2
̇ = 0; therefore:  

𝑎̇

𝑎
= −2

𝑀̇1
𝑀1

(1 −
𝑀1
𝑀2
)       →       𝑎̇ = −2𝛽𝑎 (

1

𝑀1
−
1

𝑀2
) 

For the period we’ll have:  

𝑃 = 2𝜋√
𝑎3

𝐺𝑀
  →   

𝑃̇

𝑃
=
3

2

𝑎̇

𝑎
= −3

𝑀̇1
𝑀1

(1 −
𝑀1
𝑀2
)    →     𝑃̇ = −6𝜋√

𝑎3

𝐺𝑀
𝛽 (

1

𝑀1
−
1

𝑀2
)  

 

A-4 (0.6 pt) 
 

𝑎̇ = −2𝛽𝑎 (
1

𝑀1
−

1

𝑀2
)                                                               

 

𝑃̇ = −6𝜋√
𝑎3

𝐺𝑀
𝛽 (

1

𝑀1
−

1

𝑀2
)                          

 

A-5. In an infinitesimally thin ring with an inner radius of 𝑟 and an outer radius 𝑟 + 𝑑𝑟, energy is 

leaving at a rate of −
𝐺𝑀1𝛽

2𝑟
 and entering at a rate −

𝐺𝑀1𝛽

2𝑟
+ 

𝐺𝑀1𝛽

2𝑟2
𝑑𝑟 . For the ring to stay in 

equilibrium, the excess energy of 
𝐺𝑀1𝛽

2𝑟
𝑑𝑟 per unit time must leave the system as radiation, so: 

𝑑𝑃 =
𝐺𝑀1𝛽

2𝑟2
𝑑𝑟 = 𝜎𝑇42(2𝜋𝑟𝑑𝑟) = 4𝜋𝜎𝑇4𝑑𝑟 →    𝑇 = (

𝐺𝑀1𝛽

8𝜋𝜎𝑟3
)

1
4
 

 

A-5 (1.0 pt) 
 

𝑇 = (
𝐺𝑀1𝛽

8𝜋𝜎𝑟3
)

1

4
                                                                        

 

A-6. From   𝑃 = 2𝜋√
𝑎3

𝐺𝑀
   we’ll have: 
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𝑎 = [
𝑃2𝐺(𝑀S +𝑀NS)

4𝜋2
]

1
3

 

Using the result of Part A.5, the temperature is: 

T = (
𝐺𝑀NS𝛽

8𝜋𝜎𝑟3
)

1
4
= (

500𝜋 𝑀NS 𝛽

𝜎𝑃2(𝑀S +𝑀NS)
)

1
4
= 9 × 103𝐾 

 

A-6 (0.5 pt) 
 

𝑇 = 9 × 103 𝐾 

 

A.7. For the system to remain bounded, the total mechanical energy of the system must be negative: 

𝐸′ =
1

2
𝜇′𝑣′2 −

𝐺𝑀1
′𝑀2
𝑎

< 0 → 𝑣′ < √
2𝐺(𝑀1

′ +𝑀2)

𝑎
 

For an isotropic explosion, we would have   𝑣′ = 𝑣 = √
𝐺𝑀

𝑎
 therefore: 

√
𝐺(𝑀1 +𝑀2)

𝑎
 < √

2𝐺(𝑀1
′ +𝑀2)

𝑎
 

and: 

𝑀1 −𝑀2
2

< 𝑀1
′  

A-7 (0.7 pt) 
 

𝑣max
′ = √

2𝐺(𝑀1
′+𝑀2)

𝑎
 

 

 

𝑀1min
′ = 

𝑀1−𝑀2

2
 

 

 

B. Analysis of the stability of a star 
 

B-1. Using Newton’s law of gravity: 

𝑔 = −
4𝜋𝐺 ∫ 𝑟′

2
𝜌𝑑𝑟′

𝑟

0

𝑟2
=⏞

𝜌≅𝜌𝑐

−
4𝜋𝐺𝜌c𝑟

3
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B-1 (0.2 pt) 
 

𝑔 = −
4𝜋𝐺𝜌c𝑟

3
 

 

B-2. Balance of forces for a differential element of volume with a surface area of 𝐴 and thickness Δ𝑟 

between radii 𝑟 and 𝑟 + Δ𝑟 is as follows: 

𝐹⃗ = −
𝐺𝑀(𝑟)𝜌

𝑟2
A Δ𝑟 − Δ𝑝𝐴 = 0 

in which 𝑀(𝑟) is the mass of the part of the star confined within the radius 𝑟. As Δ𝑟 is small, we 

can write:  

𝐺𝜌

𝑟2
(∫4𝜋𝑟′

2
𝜌(𝑟′)𝑑𝑟′) = −

𝑑𝑝(𝑟)

𝑑𝑟
= −𝐾𝛾𝜌𝛾−1

𝑑𝜌

𝑑𝑟
  

Multiplying both sides of the equation by   
𝑟2

4𝜋𝐺𝜌
 and taking the derivative once again, we get: 

𝑑

𝑑𝑟
[𝑟2𝜌𝛾−2

𝑑𝜌

𝑑𝑟
] +

4𝜋𝐺𝑟2

𝐾𝛾
𝜌(𝑟)  = 0 

 

B-2 (0.6 pt) 
 

ℎ1(𝜌, 𝑟) = 𝑟
2𝜌𝛾−2 

 

ℎ2(𝑟) =  
4𝜋𝐺𝑟2

𝐾𝛾
 

 

B-3. 

[𝜌c] = 𝑀𝐿
−3,    [𝑝c] = 𝑀𝐿

−1𝑇−2,   [𝐺] = 𝑀−1𝐿3𝑇−2 

[𝐺𝑙𝑝c
𝑚𝜌c

𝑛] = (𝑀−1𝐿3𝑇−2)𝑙(𝑀𝐿−1𝑇−2)𝑚(𝑀𝐿−3)𝑛 = 𝐿 

{
−𝑙 + 𝑛 +𝑚 = 0
3𝑙 − 3𝑛 −𝑚 = 1
−2𝑙 − 2𝑚 = 0

→

{
 
 

 
 𝑙 = −

1

2

 𝑚 =
1

2
𝑛 = −1

    →   𝑟0 = 𝐺
−
1
2𝑝c

1
2𝜌c

−1 

 

B-3 (0.4 pt) 
 

𝑟0 = 𝐺
−
1
2𝑝c

1
2𝜌c

−1 

 
 

B-4.  
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𝐾𝛾𝜌𝑐
𝛾−1

4𝜋𝐺𝑟0
2𝑥2

𝑑

𝑑𝑥
[𝑥2𝑢𝛾−2

𝑑𝑢

𝑑𝑥
]   = −𝜌c𝑢(𝑟) 

𝐾𝛾𝜌c
𝛾−2

4𝜋𝐺𝑟0
2𝑥2

𝑑

𝑑𝑥
[𝑥2𝑢𝛾−2

𝑑𝑢

𝑑𝑥
]   =

𝛾

4𝜋𝑥2
𝑑

𝑑𝑥
[𝑥2𝑢𝛾−2

𝑑𝑢

𝑑𝑥
] = −𝑢 

𝑑

𝑑𝑥
[𝑥2𝑢𝛾−2

𝑑𝑢

𝑑𝑥
] +

4𝜋𝑥2

𝛾
𝑢 = 0 

 

B-4 (0.3 pt) 
 

𝐴1(𝑢, 𝑥) = 𝑥
2𝑢𝛾−2 

 

𝐴2(𝑥) =
4𝜋𝑥2

𝛾
 

 

B-5. 

𝛾 = 2  →  
𝑑

𝑑𝑥
[𝑥2

𝑑𝑢

𝑑𝑥
] = −2𝜋𝑥2𝑢(𝑥) → 𝑓′′(𝑥) = −2𝜋𝑓(𝑥) →  𝑓(𝑥) =

sin(√2𝜋𝑥)   

√2𝜋
 

 

B-5 (0.6 pt) 
 

𝑓(𝑥) = 
sin(√2𝜋𝑥)   

√2𝜋
                                                                         

 

 

B.6. 

𝑑2𝑢

𝑑𝑥2
+
(𝛾 − 2)

𝑢
(
𝑑𝑢

𝑑𝑥
)
2

+
2

𝑥
(
𝑑𝑢

𝑑𝑥
) +

4𝜋

𝛾
𝑢3−𝛾 = 0  

𝑢′(0) = 0   ,    lim
𝑥→0

𝑢′(𝑥)

𝑥
= 𝑢″(0) 

𝑢″(0) + 2𝑢″(0) +
4𝜋

𝛾
= 0   →     𝛾 = −

4𝜋

3𝑢″(0)
 

𝛾~[1.64,1.70] 

B-6 (0.8 pt) 
 

𝛾 = [1.64,1.70] 

 

B.7. 
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𝑀(𝑟) = ∫ 4𝜋𝑟′2𝜌̃(𝑟′, 𝑡)𝑑𝑟′
𝑟̃(𝑟,𝑡)

0

= ∫ 4𝜋𝑟′2𝜌(𝑟′)𝑑𝑟′
𝑟

0

 

4𝜋𝑟2𝜌(𝑟) = 4𝜋𝑟̃2𝜌̃(𝑟̃, 𝑡)
𝜕𝑟̃

𝜕𝑟
→
𝜌̃

𝜌
=
𝑟2

𝑟̃2
(
𝜕𝑟̃

𝜕𝑟
)
−1

= (1 + 𝜖)−3 ≅ 1 − 3𝜖 

𝑔̃

𝑔
=

𝐺𝑀
𝑟̃2

𝐺𝑀
𝑟2

=

1
𝑟̃2

1
𝑟2

= (1 + 𝜖)−2 ≅ 1 − 2𝜖 

B-7 (0.9 pt) 
 

𝑔̃ ≃ 𝑔(1 − 2𝜖)                                                               
 

𝜌̃ ≃ 𝜌(1 − 3𝜖) 

 

 

B-8. we have 

∂𝑝̃

∂𝑟̃
= 𝜌̃(𝑔̃ − 𝑟̈̃) 

And  

𝑝̃ = 𝐾𝜌̃𝛾 

So: 

𝑟̈̃ = 𝑔̃ −
(
∂𝑝̃
∂𝑟̃
)

𝜌̃
= 𝑔̃ − 𝐾𝛾𝜌̃𝛾−2

∂𝜌̃

∂𝑟̃
 

B-8 (0.6 pt) 
 

𝑑2𝑟̃

𝑑𝑡2
= 𝑔̃ − 𝐾𝛾𝜌̃𝛾−2

∂𝜌̃

∂𝑟̃
 

 

 

B.9. Using of the results in B.7 and B.8, we have: 

𝑑2𝑟̃

𝑑𝑡2
= 𝑟̈̃ = 𝑔̃ − 𝐾𝛾𝜌̃𝛾−2

∂𝜌̃

∂𝑟̃
= 𝑔(1 − 2𝜖) − 𝐾𝛾𝜌𝛾−2

∂𝜌

∂𝑟
(
(1 − 3𝜖)𝛾−1

(1 + 𝜖)
)

= 𝑔(1 − 2𝜖) − 𝐾𝛾𝜌𝛾−2
∂𝜌

∂𝑟
(1 − 3(𝛾 − 1)𝜖 − 𝜖) 

Equilibrium requires: 

𝑔 − 𝐾𝛾𝜌𝛾−2
∂𝜌

∂𝑟
= 0 ⇒ 𝐾𝛾𝜌𝛾−2

∂𝜌

∂𝑟
= 𝑔 

therefore: 

𝑟̈̃ = 𝑟𝜖̈ = 𝑔(1 − 2𝜖) − 𝑔(1 − 3(𝛾 − 1)𝜖 − 𝜖) = 𝑔(3𝛾 − 4)𝜖 
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and: 

𝜖̈ =
𝑔

𝑟
(3𝛾 − 4)𝜖 

𝜖̈ = −
4𝜋𝐺𝜌c
3

(3𝛾 − 4)𝜖 

Stability requires that: 

3𝛾 − 4 > 0 ⇒ γ >
4

3
 

and the angular velocity of the oscillations will be: 

𝜔 = √
4𝜋𝐺𝜌c
3

(3𝛾 − 4) 

B-9 (0.6 pt) 
 

𝜖̈ = −
4𝜋𝐺𝜌c

3
(3𝛾 − 4)𝜖              

                                                 

γmin =
4

3
 

 

𝜔 = √
4𝜋𝐺𝜌c

3
(3𝛾 − 4) 
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Marking Scheme Q3 (10 points) 

Part A (5.0 pt) 

A-1 

Φ(𝑥, 𝑦) = −
𝐺𝑀1

√(𝑥 +
𝑀2

(𝑀1 + 𝑀2)
𝑎)

2

+ 𝑦2

−
𝐺𝑀2

√(𝑥 −
𝑀1

(𝑀1 + 𝑀2)
𝑎)

2

+ 𝑦2

−
1

2

𝐺(𝑀1 + 𝑀2)

𝑎3
(𝑥2 + 𝑦2) 

[Gravitational part (0.5 pt)] 
[Centrifugal part (0.5 pt)] 

1.0 pt 

A-2 

[Correct behavior at infinity (0.1 pt)] 
[Three maximums (0.3 pt)]  
[Two vertical asymptotes (0.3 pt)] 

0.7 pt 

A-3 

𝑥0

𝑎
= 0.36 

[In case of obtaining correct equation but not solving it (0.2 pt)] 
[Obtaining the numerical result with one decimal figure (0.3 pt)] 

0.5 pt 

A-4 

𝑎̇ = −2𝛽𝑎 (
1

𝑀1
−

1

𝑀2
) (0.3 pt) 

 

𝑃̇ = −6𝜋√
𝑎3

𝐺𝑀
𝛽 (

1

𝑀1
−

1

𝑀2
) (0.3 pt) 

 
[Only correct approach (conservation of momentum) (0.2 pt)] 
 

0.6 pt 

A-5 
𝑇 =  (

𝐺𝑀1𝛽

8𝜋𝜎𝑟3
)

1
4

 

[Correct approach (Energy relation) (0.5 pt)] 
[Correct solution (0.5 pt)] 

1.0 pt 

A-6 

𝑎 = [
𝑃2𝐺(𝑀S+𝑀NS)

4𝜋2 ]

1

3
   (0.3 pt) 

𝑇 = (
500𝜋𝑀NS𝛽

𝜎𝑃2(𝑀S+𝑀NS)
)

1

4  (0.1 pt) 

 
𝑇 = 9 × 103  K (0.1 pt) 
[If the final answer for T is correct the complete pt will be given] 

0.5 pt 

A-7 

 

𝐸′ =
1

2
𝜇′𝑣′2 −

𝐺𝑀1
′𝑀2

𝑎
< 0    (0.2 pt) 

𝑣𝑚𝑎𝑥
′ = √2𝐺(𝑀1

′+𝑀2)

𝑎
    (0.2 pt) 

 
𝑣′ = 𝑣    (0.2 pt) 
 
𝑀1

′
𝑚𝑖𝑛

=
𝑀1−𝑀2

2
    (0.1 pt) 

0.7 pt 

 



 
 

 

 

 
 M3-2 

 

Part B (5.0 pt) 

B-1 𝑔 = −
4𝜋𝐺𝜌c𝑟

3
 0.2 pt 

B-2 

ℎ1(𝜌, 𝑟) = 𝑟2𝜌𝛾−2 

    ℎ2(𝑟) = 4𝜋𝐺𝑟2

𝐾𝛾
 

[𝐹⃗ = −
𝐺𝑀(𝑟)𝜌

𝑟2 A Δ𝑟 − Δ𝑝𝐴 = 0  (0.3 pt)] 

0.6 pt 

B-3 𝑟0 = 𝐺−
1

2𝑝c

1

2𝜌c
−1 0.4 pt 

B-4 

𝐴1(𝑢, 𝑥) = 𝑥2𝑢𝛾−2   

𝐴2(𝑥) =
4𝜋𝑥2

𝛾
 

The answer would be correct up to a constant coefficient 

0.3 pt 

B-5 
𝑓(𝑥) = 𝐴 sin(√2𝜋𝑥) + 𝐵cos(√2𝜋𝑥)  (0.3 pt) 
𝐴 =

1

√2𝜋
 (0.2 pt)   &      𝐵 = 0  (0.1 pt) 

0.6 pt 

B-6 

𝑢′(0) = 0 (0.1 pt) 

lim
𝑥→0

𝑢′(𝑥)

𝑥
= 𝑢″(0) (0.4 pt) 

𝛾 = −
4𝜋

3𝑢″(0)
 (0.2 pt) 

𝛾~1.66  (0.1 pt) 
 

0.8 pt 

B-7 

𝜌̃ ≃ 𝜌(1 − 3𝜖) (0.6 pt)    
[𝜌̃ = 𝜌(1 + 𝜖)−3(0.4pt)] 
𝑔̃ ≃ 𝑔(1 − 2𝜖) (0.3 pt) 
[𝑔̃ = 𝑔(1 + 𝜖)−2(0.2pt)] 

0.9 pt 

B-8 𝑟̈̃ = 𝑔̃ − 𝑘𝛾𝜌̃𝛾−2
∂𝜌̃

∂𝑟̃
 

 
0.6 pt 

B-9 

𝜖̈ = −
4𝜋𝐺𝜌c

3
(3𝛾 − 4)𝜖      (0.4 pt)        

 

γmin =
4

3
      (0.1 pt) 

 

𝜔 = √
4𝜋𝐺𝜌c

3
(3𝛾 − 4)   (0.1 pt) 

  

0.6 pt 
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