Solutions/
Marking Scheme

T1

Dark Matter

A. Cluster of Galaxies

Question A.1
Answer Marks
Potential energy for a system of a spherical object with mass
4
M(r)=—7r’p and a test particle with mass dm at a distance r is given by
3 0.2 pts
M(r
du = MO gy
Thus for a sphere of radius R
_ R M(@) (R 4rr’p 2 o6 s SR
U _—jo G - dm_—j0 GT47zr pdr_—?Gn P jo r'dr 0.6 pts
16
— __G7Z_2 2R5
15 P
Then using the total mass of the system
4
M =—~R’
3 Y
0.2 pts
we have
2
U = _3GM
5 R
Total | 1.0 pts
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Question A.2

Answer Marks

Using the Doppler Effect,
f=f —1 ~f,(1-p)
b 1+ 4 0 ’

where S =V/C and v <<c . Thus the j-th galaxy moving away (radial) speed
is

ri f, 0.2 pts

V, = C[i - lj
fi

All the galaxies in the galaxy cluster will be moving away together due to the
cosmological expansion. Thus the average moving away speed of the N
galaxies in the cluster is

c N N
:_WZ f - f Z(__IJ 0.3 pts

0 i=l

Alternative without approximation:

-SSR

Total | 0.5 pts
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Question A.3

Answer Marks

The galaxy moving away speed V,, in part A.2, is only one component of the

three component of the galaxy velocity. Thus the average square speed of each
galaxy with respect to the center of the cluster is

1 N~ —e 2 1 N
W;(Vi_ :WZI xi ch) +(Vy| Vyc) +(Vz| Vzc) 0.5 pts

Due to isotropic assumption

lN - 3N
NV

i=1

And thus the root mean square of the galaxy speed with respect to the cluster
center is

3Q 5 3 3 (<, 2 2
Vims = WZ(VH _Vrc) 3 WZ(V” 2Vchrl +Vcr ) = W Zvri _3Vcr
i=1 i=1

i=1

e L3 (53]

Alternative without approximation:
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0.3 pts

zZ|-
MZ
N
[
N |3
<
(39

rms

Total | 1.5 pts
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Question A.4

Answer Marks

The time average of dI'/dt vanishes

<d_F> _

dt /,
Now 0.6 pts
p. resp a6

: . + e

d Zp, L TPy
=2Fi-ﬁ+2mivi-vi=2|fi-ﬁ+2K

Where K is the total kinetic energy of the system. Since the gravitational force on
i-th particle comes from its interaction with other particles then

ZF F—ZF r_ZFJI i ZFIJ i ZFJI i ZFJI

i, j=i i<j i>] i<j i<j

(%, r) : mm

=X Fm-n)=-X6 ([-1)=-26——-=U,

i<j < |r"r i |F - | 5 If-

Alternative proof:
0.9 pts
ZF TL == Z Fl'?l = F21.F1 + F31.F1 + F41.F1 + -+ FNl'?l +

i,j#i
Fro?y + Fag. Ty + Fypo Ty 4 o+ Fyy By +
Fiats + Fpg T + Fyg T + - + Fys. Fa +
Fin. Ty + Fon. Ny + Fsy. Py + -+ Fyy_1. Py_1

Collecting terms and noting that ﬁij = —ﬁji we have
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Fip. (% = 7) + Fi3. (3 = 7)) + Fig. (7, — 7)) + -+ Fp3. (5 — 1)

+ F24. (F4 - Fz) + -+ F34. (F4 - Fg) + = ZF}V ?l _7:})

i<j
mi m] (7 —7) > mimy
Z G 2 (7 T}) Z Gim—=7 = Utot
i<j T |rl | i<j |ri 7
Thus we have
d—F=U +2K
dt
dr 0.2 pts
And by taking its time average we obtain<E=U +2K> =0 and thus
t
1 1
<K>t = ——<U >t . Therefore y =—.
2 2
Total | 1.7 pts
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Question A.5

Answer Marks

Using Virial theorem, and since the dark matter has the same root mean square
speed as the galaxy, then we have

<K>t = __<U >t 0.3 pts

M. 13GM
2 ™ 25 R

From which we have

5Ry2 0.1 pts

rms

3G

And the dark matter mass is then

5RV2 0.1 pts
o = rms ng
3G
Total | 0.5 pts
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B. Dark Matter in a Galaxy
Question B.1

Answer Marks

Answer B.1: The gravitational attraction for a particle at a distance r from
the center of the sphere comes only from particles inside a spherical
volume of radius r. For particle inside the sphere with mass m_, assuming
the particle is orbiting the center of mass in a circular orbit, we have 0.3 pts

m'(rHm, _ my,

S
r? r

G

with m'(r) is the total mass inside a sphere of radius r
m'(r) :izzr3msn

3
Thus we have 0.2 pts

1/2
v(r) = (_47zinms) r

While for particle outside the sphere, we have

A7GAM. R 1/2 0.2 pts
<[

3r
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The sketch is given below
v(r)
0.1 pts
R r
Sketch of the rotation velocity vs distance from the center of galaxy
Total | 0.8 pts
Question B.2
Answer Marks
The total mass can be inferred from
m'(Ry)m; _ myv;
— =
R, R,
Thus 0.5 pts
2
' VO Rg
mg =m'(R;) = G
Total | 0.5 pts
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Question B.3

Answer Marks

Base on the previous answer in B.1, if the mass of the galaxy comes only
from the visible stars, then the galaxy rotation curve should fall

proportional to 1/\/F on the outside at a distance r > R, . But in the figure

of problem b) the curve remain constant after r > Rg , we can infer from

gmmm, _ m.vg 0.3 pts

r? r

to make V(I) constant, then m'(r) should be proportional to r forr > Rg ,

i.e.forr>R,, m'(r) = Ar with A is a constant.

While forr <R, to obtain a linear plot proportional tor, then m'(r)

should be proportional tor?, i.e. m'(r) = Br°. 0.3 pts
Thus for < R, we have
r
m'(r) = '|',ot(r)47z'r'2 dr'=Br’
0
) 5 0.2 pts
dm'(r) = p,(r)4ar-dr =3Br-dr
. 3B
Thus total mass density p, (') = —
4
R 2
¢ m Vv
mg = J.£47zr'2dr': BR, orB=—F=—"
o 4m R, GR,
3V2 0.2 ptS
Thus the dark matter mass densit r= 0 _ —nm
y p(r) AGR. s
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While for r > R, we have
' Ry 12 r ' 12
m'(r) = JO p(r"anr dr'+fR p(r'Ydzr'=dr' = Ar
m'(r) = my +J: p(r"4m' dr' = Ar
9
0.2 pts
r 2
jR p(r4zr?dr'= Ar—M,
Naar’=A,orp(r)= :
p(r) p(r) -
Now to find the constant A.
A 4midr= A -R)= A
IR4m'2 ar'sdr'= A(r — g)_ r—mg
V2
Thus AR, =mgand A=-2
G
We can also find A from the following
0.3 pts
m'(r)m Arm.  mv; 2
MM, _ g AT _ MY ypusa=o
r r r G
Thus the dark matter mass density (which is also the total mass density
since n~0 forr >R, .
V2
r=—=>-forr >R
P 47Gr? ’
Total | 1.5 pts
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Interstellar Gas and Dark Matter
Question C.1
Answer Marks
Consider a very small volume of a disk with area A and thickness Ar, see Fig.1
\er(!’+er
1 4ar
P(r)
r
0.3 pts
g(r) P
Figure 1. Hydrostatic equilibrium
In hydrostatic equilibrium we have
(P(r)—P(r+Ar))A—pg(r)AAr =0
AP Gm'(r)
Ar r
0.2 pts
dP Gm'(r) Gm'(r)
—=—p——>=-n(rym, ———=.
a P (mm, r?
Total | 0.5 pts
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Question C.2
Answer Marks
Using the ideal gas law P = n kT where n = N/V where n is the number
density, we have
P =kT dn(r) + kn(r)d—T =-n(rm, Gm_2(0
dr dr dr r
Thus we have 0.5 pts
2 2
m(r) = — KT ( r- dn(r) LT dT(r)j'
Gm, {n(r) dr T(r) dr
Total | 0.5 pts
Question C.3
Answer Marks
If we have isothermal distribution, we have dT/dr =0 and
KT, { r* dn(r)
m'(r)=—-—->_ ( 0.2 pts
Gm,{n(r) dr
From information about interstellar gas number density, we have
1 dn(r) _ 3r+p
n(r) dr r(r+p)
Thus we have 0.2 pts

_KTyr 3r+p

m(r) Gm, (r+f)
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Mass density of the interstellar gas is

(n=—""
Py Cr(B+r)
Thus
0 s KT,r 3r+ 8 0.3 pts
m'(r) = r MUz dr=—2—"—
(r) {(pg( )+ P (1) ey

» KT,r 3r+p
m'(r) = J(T P (T’ ))47# dr'= Gm, —(r+ﬂ)

m 2 2
( +pdm(r)j4ﬂf _ kT, 3r +6rﬁjﬁ
r(B+r)* Gm, (r+p)
kT, 3r’+érg+p3°  om 0.3 pts
pdm(r): 0 ﬂ ﬁ - ;

47Gm. (r+B)>°r*  r(f+r)

p

Total | 1.0 pts
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Earthquake, Volcano and Tsunami

A. Merapi Volcano Eruption

12

Question Answer Marks
Al Using Black’s Principle the equilibrium temperature can be obtained | 0.5 pts
mwcvw(Te - Tw) + mmcvm(Te - Tm) =0
Thus,
— mW CUWTW + mm CUme
¢ mWCUW + mmcvm
A.2 For ideal gas, p,v, = RT, , thus 0.3 pts
Pe = —
¢ ve mWCUW + mmcvm
A3 The relative velocity U, can be expressed as 0.5 pts
Urer = K pavﬁmy
where Kk is a dimensionless constant.
Using dimensional analysis, one can obtain that
LT-1 = Ma+yL—a+3BT—2a'
a+y=0
—-a+3=1
—2a=-1
Therefore
Upep = K p1/2V1/2m—1/2
Total score | 1.3 pts
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B. The Yogyakarta Earthquake

12

Question Answer Marks
B.1 From the given seismogram, fig. 2 03 | 0S5
pts | pts
x10° m/s
5.0 ¥ f 1 ¥
2.5 L & ¢ 1%
0 —
2.5 F 1 1 A
5.0 : : y
7.5 v i 1.0
[ | Vi I I
22:54:00 22:54:05
22:54:045
One can see that the P-wave arrived at 22:54:045 or (4.5 —5.5)
seconds after the earthquake occurred at the hypocenter.
Since the horizontal distance from the epicenter to the seismic station | 0.1
in Gamping is 22.5 km, and the depth of the hypocenter is 15 km, the pts
distance from the hypocenter to the station is
22.5% +15% km=27.04 km
Therefore, the P-wave velocity is 0.1
27.04 Km pts
Vp = “a7s = 5.75 Km/s

Page 2 of 8




Solutions/ L
Marking Scheme e e

12

Question Answer Marks
B.2 Direct wave: 0.2 | 0.6
pts | pts
SR /500> +15* 502.021
Lo =—— = = s=869s
v, v, 5.753
As in the case of an optical wave, the Snell’s law is also applicable to | 0.4
the seismic wave. pts

Yogyakarta Denpasar
{Epicenter) 500 Km (DNP)

15 Km

Hypocenter $y .-+~

= Mantle

[llustration for the traveling seismic Wave

Reflected wave:

SC CR
treﬂected = +—

v,y
SCcos@p+CRcosep =500= cotgp :%
reflected 45 = 873 S

V, sin ¢
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Question

Answer

Marks

B.3

Velocity of P-wave on the mantle. The fastest wave crossing the mantle
is that propagating along the upperpart of the mantle. From the figure
on refracted wave, we obtain that

2

sind 1 ) Vv v

=—:; sinf@=—-L; cosO@=,[1-| L
v, v,

cos@zg; X, = 15 km; X, = 30 km
X, cos@ cos@

X, =500—(X, +X, )sin @ =500—45tan @

0.4
pts

The total travel time:

_XtX X 45 +500_45tan0

t =
v, V, V,cos@ v, v,

tcos @ =45u, +500u, cos @ —45u, sin &
where u, =1/v, and u, =1/v, . Arranging the equation, we get
(500 +45% Ju; -2t 500u, +t* —45 u, =0

whose solution is

S00Wv? +45v,,(452 +500° )~ £}
- v2 _45?

vV,

0.5
pts

x10-5m/s Station DNP

0 B RV
-4t
-8 F

22:55:05 22:55:15

From the seismogram, we know that the fastest wave arrived at
Denpasar station at 22:55:15, which is t =75 s from the origin time of
the earthquake in Yogyakarta. Thus

v, =7.1km/s

0.3
pts

1.2
pts
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Question Answer Marks
B.4 By using Snell’s law and defining p=sind/v and u=1/v, we obtain 0214
. ' ' p pts | pts
p=u(0)sing, =u(z)sinG; sinf =——
u(z)
where u(z)=1/v(z) and 6, is the initial angle of the seismic wave | 0.5
direction. pts
dx dz ’
—:sinﬁzi; X coso=1-| 2
ds u(z) ds u(z)
dx dxds u 1/2
e lv-p)
dz dsdz wu (uz_ pZ)
Zy p
x=J' 7 dz
2 (uz _ pz)
0.7
dx o pts
: X
1 |
3 ds i
____________ I
y<

Illustration for the direction of wave

The distance X is equal to twice the distance from epicenter to the turning
point. The turning point is the point when €=90°. Thus
1 . _ 1- PV,

A
v, +az, ap

p= u(zt) =

4

p(V0+aZ) 2 2 2 2,,2
X=2 dz=—1|/1-p (v, +az)" —\/1-p7V,
!(l— p’(v, +az)’)"” " ap (‘/ ’ JI-p )
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Question Answer Marks
B.5 For the travel time, dt = E; dt =u(2). 10 1.0
v(2) ds pts | pts
Thus
dt dtds  u’
dz dsdz (u>-p))"
and therefore
T=2 4d
) (U3 —pH)? ?| o (Vo +22) (1- p*(vy +az)*)!?
B.6 The total travel time from the source to the Denpasar can be calculated | 0.6 | 1.0
using previous relation pts | pts
u’(z)
T(p)= 2J—V2dz
CRORTY
Which is valid for a continuous U(Z). For a simplified stacked of
homogeneous layers (Figure F), the integral equation became a
summation
2
u-Az
T(p)= 22—1/2
~(uw=-p?)
uAz uiAz uAz 0.4
T(p) =2————+2——— S +2——— ots
wi-p»H2  W-p>z (W-pH?
2 x (0.1504)? x 6 N 2 x (0.1435)2 x 9
- 1 1
(0.1504% — 0.1432%)z  (0.14352% — 0.1432)2
2 x (0.1431)? x 15
(0 14312 — 0. 1432)2
= 151.64 second
Note that the actual travel time from the epicenter to Denpasar is 75
seconds. By varying the parameters of velocity and depth up to suitable
value of observed travel time, physicist can know Earth structure.
Total score | 5.7
pts
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C. Java Tsunami

Question Answer Marks
C1 The center of mass of the raised ocean water with respect to the ocean | 0.5 | 0.5
surface is h/2. Thus pts | pts
h%pALg
P™ 4

where p is the ocean water density.

C.2 Considering a shallow ocean wave in Fig. 5, the whole water (from the | 0.7 | 1.2
surface until the ocean floor) can be considered to be moving due to the | pts | pts
wave motion. The potential energy is equal to the kinetic energy.

. ARZL _1 dLAU?
2P g =3P

Where X = /1/2 and U is the horizontal speed of the water component.
The water component that was in the upper part hL% should be equal to
the one that moves horizontally for a half of period of time T/Z' i.e.

hLA/2 =dLUTt/2.
Thus we have

g
C1d
Accordingly, 0.5
-2 pts
Joa
Thus
A
v=t=gd

C.3 Using the argument that the wave energy density is proportional to its | 1.3 | 1.3
amplitude E = kA? with A is amplitude and k is a proportional constant | pts | pts
Because the energy flux is conserve, then

Eva = Eyvya for an area a where the wave flow though.
Then,

kA% [gd = kA3\[gd,

[uny

do\3
a=(3)

(Therefore the tsunami wave will increase its amplitude and become
narrower as it approaches the beach).

Total score | 3.0
pts
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Total Score for Problem T2:

Section A : 1.3 points
Section B : 5.7 points
Section C: 3.0 points

Total : 10 points
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Cosmic Inflation

A. Expansion of Universe

Question A.1
Answer Marks
For any test mass m on the boundary of the sphere, 0.2
mR(t) = —GmM,/R?(t) (A.1.1)

where M, is mass portion inside the sphere

Multiplying equation (A.1.1) with R and integrating it gives 0.6
. GM
R— dt == R?= E
[#5 :

where A is a integration constant

Taking M, = %nR3(t)p(t), and R = a R, 0.2
(o’z)z LU &) 0.2
3 P T Regz(p
_ 81G 0.1
Therefore, we have A; = - .
Total 1.3
Question A.2
Answer Marks
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The 2" Friedmann equation can be obtained from the 1% law of 0.1
thermodynamics :
dE = —pdV +dQ.
For adiabatic processes dE + pdV = 0 and its time derivativeis E + p V = 0.1
0.
For the sphere V =V (3 d/a) 0.1
Its total energy is E = p(t)V(t) c? 0.2
S a 2 0.1
Therefore E = (p +3 Z) Ve
It yields 0.2
. py\a
P +3 (p + C—z)a =0
Therefore, we have A, = 3. 0.1
Total 0.9
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Question A.3

Answer Marks

Interpreting p(t)c? as total energy density, and substituting % =wp(t) 0.1

in to the 2" Friedmann equation yields:

a
p+3p(1+w)a=0

p o< g 3W+D) 0.2

(i) In case of radiation, photon as example, the energy is given by E, = 0.3

hv = hc/A then its energy density p,, = % x a~*sothatw, = é

mgc? o 0.3
14
a~3 since dominant energy comes from its rest energy mocz, so that w,,, =

0

(i) In case of nonrelativistic matter, its energy density nearly p,, =

(iii) For a constant energy density, let say €, = constant, €, « a° so that 0.3
Wp = —-1.

Total 1.2
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Question A.4

Answer Marks

(i) In case of k = 0, for radiation we have p,a* = constant. So by comparing 0.2
the parameters values with their present value, p,(t)a*(t) = pyoag,

() =" o (2"

[ada =%a2 +K = (% proa(‘;)z t.

1

Because a(t = 0) = 0,K = 0, then 0.2

1
1 - 1 1 1
a(®) = @2 (57 proad)’ 12 = (2Hy)7 t2.

1
where H, = (% pro)2 after taking ay, = 1.

(i) for non-relativistic matter domination, using p,,(t)a3(t) = pmeas, and| 0.4
similar way we will get

2 1 2
3\3 (87G 3.2 3Hp\3 ,2
a() = (3)° (5% pmoat)" £5 = (332) .
1
where H, = (% pmo)z.

(iii) for constant energy density,

0.4
Ina = Hyt + K’
1
Where K’ is integration constant and Hy = (% pA)z. Taking condition a, =
1,
1 (a) Ho(t — t
nl—|= -
o) = Hot = £)
a(t) = eHO(t_tO)
Total 1.2
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Question A.5
Answer Marks
Condition for critical energy condition: 0.1
3H?
t) =——
pe(t) = o

Friedmann equation can be written as

H?(t) = H*(DQ() - :

Rza?(t)
2
() a?H2@-1) = & (A.5.1)
Total 0.1
Question A.6
Answer Marks
2

Because (i—‘z’) a’H? >0, then k=41 corresponds to Q>1, k=-1 0.3

correspondsto 0 < 1 and k = 0 correspondsto Q) = 1
Total 0.3
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B. Motivation To Introduce Inflation Phase and Its General Conditions
Question B.1

Answer Marks
Equation (A.5.1) shows that 0.1
kc? 1
(.Q —_ 1) = R_g -

In a universe dominated by non-relativistic matter or radiation, scale factor can 0.2

P
be written as a function of time as a = q, (ti) where p <1 (p = % for
0

I 2 R
radiationand p = gfor non-relativistic matter )

(Q—-1) =k t2-p) 0.2
Total 0.5
Question B.2
Answer Marks

For a period dominated by constant energy provides the solution a(t) = et so 0.1
thata = Helt

k 2
(@=1) = 20 0

Total 0.3
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Question B.3

Answer Marks

Inflation period can be generated by constant energy period, therefore it is a 0.2

phase where w = —1 so that p = wpc? = —pc? (negative pressure).
Differentiating Friedmann equation leads to 04
2
g2 = o6 pa? — ke
3 R?

... 8mG ,. ) 8mG ) )
2ad = % (pa? + 2pa a) =% (-3 (p+c%) aa + 2paa).

a_ 4nG N 3p
a_ 3 (b c?
So that because during inflation p = —pc?, it is equivalent with condition d > 0.1

0 (accelerated expansion)

As a result, d@ =d(a)/dt =d(Ha)/dt >0 or d(Ha)™!/dt < 0 (shrinking | 0.2
Hubble radius).

Total 0.9
Question B.4
Answer Marks
-1
Inflation condition can be written as d(a:t) < 0, with H = a/a as such 0.2
d(aH)™  aH+aH _ 1(1 J<0me<t
dt (aH)?  a € €
Total | 0.2
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C. Inflation Generated by Homogenously Distributed Matter

Question C.1
Answer Marks
Differentiating equations (4) and employing equation 4 we can get 0.3
. _ 1 . e a_V . _ 1 _ . 2
2HH = 3M2, [¢¢ + (a¢) ¢] - 3M§l[ 3H ¢7]
. 1 ¢?
f=—19
2 My,
n2
Therefore € = = f > 0.1
2 M3, H

The inflation can occur when the potential energy dominates the particle’s 0.2
energy ($? < V) such that H =~ V/(3M2).

Slow-roll approximation: 3H(f) ~ =V’

0.1
Implies 0.3
2 2
€~ %(Vv) (C.1.1)
we also have 0.4
3H$ +3HP =—-V"¢
e
Therefore
my ~ M3 (C.1.2)
dN = H dt = (5)do ~ —Mizzﬂ(V/V') do (C13)| o3
@ =~ wr V)
Total 1.7
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D. Inflation with A Simple Potential

13

Question D.1
Answer Marks
Inflation ends at € = 1. Using V(¢) = A4(¢/Mpl)n yields 0.5
Mz%l n ]2 1 n M
= — = et [ —
2 d)end ¢end \/E Pt
Total 0.5
Question D.2
Answer Marks
From equations (C.1.1), (C.1.2) and (C.1.3) we can obtain 0.2
2
¢ l 1
N=—|—| —+p
[Mpl 2n
where £ is a integration constant. As N = 0 at ¢4 then f = %.
2
0] 1 n
N=—|—| —+-—
M, | 2n 4
My1? 2(n—1) 0.2
= —1)|-2 ] =
ny =nn )[ b W — 4N
_n? [Mpl]z _n 0.2
=219l “n-an
so that 0.1
— 16e = 16n
rEAbE= n—4N
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13

2(n+2) 0.1
=142n,—6e=1——-—7--
s =1 2ny b€ (n— 4N)
To obtain the observational constraint n; = 0.968 we need n = —5.93 which 0.1
is inconsistent with the condition r < 0.12. There is no a closest integer n that
can obtains r < 0.12. As example, for n = —6 leads a contradiction 0 <
(—=0.27) and for n = =5 leads a contradiction 0 < (—0.2).
Total 0.9
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