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Solution - Image of a charge 

Solution of Task 1 
Task 1a) 

As the metallic sphere is grounded, its potential vanishes, V=0. 

Task1b) 

Let us consider an arbitrary point B on the surface of the sphere as depicted in Fig. 1.  

 

Fig 1. The potential at point B is zero.  

 

The distance of point B from the charge q' is 

 
 
 

(1) 

whereas the distance of the point B from the charge q is given with the expression 

                                   
                                       (2)  

The electric potential at the point B is  

                                  
                                          (3) 

This potential must vanish,  

 
 
 

                                  
                                          (4) 

  i.e. its numerical value is 0 V. 
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Combining (1), (2) and (3) we obtain 

        
                          (5) 

 

As the surface of the sphere must be equipotential, the condition (5) must be satisfied for every 

angle α what leads to the following results 

                                     
 

                                       (6) 

and 

                                       
                                       (7) 

By solving of (6) and (7) we obtain the expression for the distance d' of the charge q' from the center 

of the sphere  

 
 
 
 

                                       
                                       (8) 

and the size of the charge q' 

 
 
 

                                       
                                        (9) 

 

Task 1c) 

Finally, the magnitude of force acting on the charge q is  
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The force is apparently attractive. 

Solution of Task 2 
Task 2a) 

The electric field at the point A amounts to 
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                                    (11) 

 

Task 2b) 

For very large distances r we can apply approximate formula (1+a)-2 ≈ 1-2a to the expression (11) 

what leads us to 

                     
 

                    (12)                   

In general a grounded metallic sphere cannot completely screen a point charge q at a distance d 

(even in the sense that its electric field would decrease with distance faster than 1/r2) and the 

dominant dependence of the electric field on the distance r is as in standard Coulomb law. 

 

Task 2c) 

In the limit d → R the electric field at the point A vanishes and the grounded metallic sphere screens 

the point charge completely.  

 

Solution of Task 3 
 

Task 3a) 

Let us consider a configuration as in Fig. 2.  

 

Fig 2. The pendulum formed by a charge near a grounded metallic sphere.  

The distance of the charge q from the center of the sphere is 
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                                       (13) 

The magnitude of the electric force acting on the charge q is 

 
 
 
 

                                      (14) 

From which we have 
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Task 3b) 

The direction of the vector of the electric force (17) is described in Fig. 3. 

 

Fig 3. The direction of the force F.  

 

The angles α and β are related as  

 
 

                                      (16) 

whereas for the angle γ the relation γ=α+β is valid. The component of the force perpendicular to the 

thread is F sin γ, that is ,        
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Task 3c) 

The equation of motion of the mathematical pendulum is 

 FmL                                        (18) 

 

As we are interested in small oscillations, the angle  α  is small, i.e. for its value in radians we have α 

much smaller than 1. For a small value of argument of trigonometric functions we have approximate 

relations sin x  ≈ x and cos x ≈ 1-x
2
/2. So for small oscillations of the pendulum we have 

)/( LlL     and )/( Lll   .                     

Combining these relations with (13) we obtain 
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Where Lld  what leads to  
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Solution of Task 4 
First we present a solution based on the definition of the electrostatic energy of a collection of 

charges. 

Task 4a) 

The total energy of the system can be separated into the electrostatic energy of interaction of the 

external charge with the induced charges on the sphere, Eel,1, and the electrostatic energy of mutual 

interaction of charges on the sphere, Eel,2, i.e. 

 

                                     (21) 

 Let there be N charges induced on the sphere. These charges jq are located at points 

Njrj ,,1, 


  on the sphere. We use the definition of the image charge, i.e., the potential on the 

surface of the sphere from the image charge is identical to the potential arising from the induced 

charges: 
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 where r


is a vector on the sphere and 'd


denotes the vector position of the image charge. When r


coincides with some ir
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, then we just have
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From the requirement that the potential on the surface of the sphere vanishes we have 
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                           (24) 

where d


denotes the vector position of the charge q


( r


 is on the sphere).  

For the interaction of the external charge with the induced charges on the sphere we have  
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(25) 

Here the first equality is the definition of this energy as the sum of interactions of the charge q with 

each of the induced charges on the surface of the sphere. The second equality follows from (21). 

In fact, the interaction energy 1,elE

 

follows directly from the definition of an image charge.  

Task 4b) 

The energy of mutual interactions of induced charges on the surface of the sphere is given with 
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 Here the second line is obtained using (22). From the second line we obtain the third line applying 

(23), whereas from the third line we obtain the fourth using (22) again. 

 

Task 4c) 

Combining expressions (19) and (20) with the quantitative results for the image charge we finally 

obtain the total energy of electrostatic interaction 
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 An alternative solution follows from the definition of work. By knowing the integral 
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We can obtain the total energy in the system by calculating the work needed to bring the charge q 

from infinity to the distance d from the center of the sphere: 
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This solves Task 4c).  

The electrostatic energy between the charge q and the sphere must be equal to the energy between 

the charges q and q’ according to the definition of the image charge: 
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This solves Task 4a).  

From this we immediately have that the electrostatic energy among the charges on the sphere is: 
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This solves Task 4b).  

 

 



41st International Physics Olympiad, Croatia – Theoretical competition, July 19th, 2010 1/4 

 

Solution - Chimney physics 

This problem was inspired and posed by using the following two references: 

 W.W. Christie, Chimney design and theory, D. Van Nostrand Company, New York, 1902. 
 J. Schlaich, R. Bergermann, W. Schiel, G. Weinrebe, Design of Commercial Solar Updraft 

Tower Systems — Utilization of Solar Induced Convective Flows for Power Generation, Journal 
of Solar Energy Engineering 127, 117 (2005). 

 

Solution of Task 1 
a) What is the minimal height of the chimney needed in order that the chimney functions 

efficiently, so that it can release all of the produced gas in the atmosphere? 

Let )(zp denote the pressure of air at height z; then, according to one of the assumptions

gzpzp Air )0()( , where )0(p is the atmospheric pressure at zero altitude.  

Throughout the chimney the Bernoulli law applies, that is, we can write  

.)()(
2

1 2 constzpgzz SmokeSmokeSmoke   , 
(1) 

where )(zpSmoke is the pressure of smoke at height z, Smoke  is its density, and )(zv denotes the 

velocity of smoke; here we have used the assumption that the density of smoke does not vary 

throughout the chimney. Now we apply this equation at two points, (i) in the furnace, that is at point 

z , where  is a negligibly small positive number, and (ii) at the top of the chimney where hz 

to obtain: 

)()()(
2

1 2   SmokeSmokeSmokeSmoke phpghh  
(2) 

On the right hand side we have used the assumption that the velocity of gases in the furnace is 

negligible (and also 0  gSmoke ).  

We are interested in the minimal height at which the chimney will operate. The pressure of smoke at 

the top of the chimney has to be equal or larger than the pressure of air at altitude h ; for minimal 

height of the chimney we have )()( hphpSmoke  . In the furnace we can use )0()( ppSmoke  . The 

Bernoulli law applied in the furnace and at the top of the chimney [Eq. (2)] now reads 

)0()()(
2

1 2 phpghh SmokeSmoke   . 
(3) 

 From this we get 
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The chimney will be efficient if all of its products are released in the atmosphere, i.e.,  
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from which we have 
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We can treat the smoke in the furnace as an ideal gas (which is at atmospheric pressure )0(p and 

temperature SmokeT ). If the air was at the same temperature and pressure it would have the same 

density according to our assumptions. We can use this to relate the ratio SmokeAir  / to AirSmoke TT /

that is,  
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 For minimal height of the chimney we use the equality sign.  

b) How high should the chimney in warm regions be? 
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c) How does the velocity of the gases vary along the height of the chimney? 

The velocity is constant,  
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(10) 

This can be seen from the equation of continuity .constAv  ( Smoke  is constant). It has a sudden 

jump from approximately zero velocity to this constant value when the gases enter the chimney from 

the furnace. In fact, since the chimney operates at minimal height this constant is equal to B , that is 

ABv / .  

d) At some height z, from the Bernoulli equation one gets 

gzghpzp SmokeSmokeAirsmoke   )()0()( . (11) 

Thus the pressure of smoke suddenly changes as it enters the chimney from the furnace and acquires 

velocity. 
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Solution of Task 2 

a) The kinetic energy of the hot air released in a time interval t  is 

Atm

HotHotkin
T

T
ghtAvvtAvE


  2)(

2

1
, 

(12) 

Where the index “Hot” refer to the hot air heated by the Sun. If we denote the mass of the air that 

exits the chimney in unit time with HotAvw   , then the power which corresponds to kinetic 

energy above is  

Air

kin
T

T
wghP


 . 

(13) 

This is the maximal power that can be obtained from the kinetic energy of the gas flow.  

The Sun power used to heat the air is  

TwcGSPSun  . (14) 

The efficiency is evidently 
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b) The change is apparently linear. 

Solution of Task 3 
a) The efficiency is 

%64.00064.0 
AtmcT

gh
 . 

(16) 

b) The power is 

45)2/( 2   DGGSP kW. (17) 

c) If there are 8 sunny hours per day we get 360kWh.  

Solution of Task 4 
The result can be obtained by expressing the mass flow of air w as 
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From this we get 

760w kg/s. (21) 
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Solution - model of an atomic nucleus 

Solution of Task 1  
a) In the SC-system, in each of 8 corners of a given cube there is one unit (atom, nucleon, etc.), 

but it is shared by 8 neighboring cubes – this gives a total of one nucleon per cube. If 

nucleons are touching, as we assume in our simplified model, then Nra 2 is the cube edge 

length a. The volume of one nucleon is then 
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from which we obtain  
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b) The mass density of the nucleus is: 
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c) 

Taking into account the approximation that the number of protons and neutrons is 

approximately equal, for charge density we get:
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(5) 

The number of nucleons in a given nucleus is A. The total volume occupied by the nucleus is: 

f

AV
V N , 

(6) 

which gives the following relation between radii of nucleus and the number of nucleons: 
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(7) 

The numerical constant (1.06 fm) in the equation above will be denoted as r0 in the sequel.  

 

 

Solution of Task 2 
First one needs to estimate the number of surface nucleons. The surface nucleons are in a 

spherical shell of width Nr2 at the surface. The volume of this shell is  
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The number of surface nucleons is:  
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(9) 

The binding energy is now: 
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Solution of Task 3 - Electrostatic (Coulomb) effects on the binding energy 
a) Replacing Q0 with Ze gives the electrostatic energy of the nucleus as:  
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The fact that each proton is not acting upon itself is taken into account by replacing Z2 with 

Z(Z-1): 
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b) In the formula for the electrostatic energy we should replace R with 
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where Z≈A/2 has been used. The Coulomb repulsion reduces the binding energy, hence the 

negative sign before the first (main) term. The complete formula for binding energy now 

gives: 











2420

3
463

3/23/5

0

3/12
3/13/23/23/1 AA

r

fe
faaAfaAfAaE

N

VVVVb


 
(15) 

 

Solution of Task 4 - Fission of heavy nuclei 
a) The kinetic energy comes from the difference of binding energies (2 small nuclei – the 

original large one) and the Coulomb energy between two smaller nuclei (with Z/2=A/4 

nucleons each):  

 

   

d

eA

AA

r

fe
fa

aAfaAf

d

eA
AE

A
EdE

N

V

VV

bbkin

164

1

12
2

12
420

3
4

)12(6)12(3

444

1

2
2)(

22

0

3/1
3/2

3/2
3/5

0

3/12

3/23/13/23/13/23/1

22

0



































 

(16) 

(notice that the first term, Aav, cancels out). 

 

b) The kinetic energy when )2/(2 ARd 
 
is given with: 

 

MeV)091.33175.360365.1002203.0(

)12(
40

3

128

2
)12(

80

3
4

)12(6)12(3

216

2

4

1

2
2

3/13/23/5

3/23/1

0

3/12
3/5

3/1
3/2

0

3/12

3/23/13/23/13/23/1

3/13/1

223/1

0









































AAA

A
r

fe
A

r

fe
fa

aAfaAf

fAr

eA
AE

A
EE

NN

V

VV

N

bbkin





 

(17) 

 

Numerically one gets: 

 A=100 … Ekin= -33.95 MeV,  

 A=150 … Ekin= -30.93 MeV,  
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 A=200 … Ekin= -14.10 MeV,   

 A=250 … Ekin= +15.06 MeV. 

 

In our model, fission is possible when 0))2/(2(  ARdEkin . From the numerical 

evaluations given above, one sees that this happens approximately halfway between A=200 

and A=250 – a rough estimate would be A≈225.  Precise numerical evaluation of the 

equation: 

0MeV)091.33175.360365.1002203.0( 3/13/23/5  AAAEkin  (18) 

gives that for 227A  fission is possible. 

 

 

Solution of Task 5 – Transfer reactions 
Task 5a) This part can be solved by using either non-relativistic or relativistic kinematics.  

 Non-relativistic solution 

First one has to find the amount of mass transferred to energy in the reaction (or the energy 

equivalent, so-called Q-value): 

 

   

kg. 103616.1

a.m.u. 00082.0

a.m.u. )99491.1593962.53(a.m.u. )00000.1293535.57(

mass totalmass total

30

reaction beforereactionafter 







m

 

(19)

 

Using the Einstein formula for equivalence of mass and energy, we get: 

   

J 102237.1299792458103616.1

energy kinetic totalenergy kinetic total

13230

2

reaction beforereactionafter 

 





cm

Q

 

(20)

 

Taking into account that 1 MeV is equal to 1.602∙10-13 J, we get: 

MeV 761.0101.602 / 102237.1 1313  Q

 

(21) 
 

This exercise is now solved using the laws of conservation of energy and momentum. The 

latter gives (we are interested only for the case when 12C and 16O are having the same 

direction so we don’t need to use vectors): 

           NiNiCCOO 585812121616 vmvmvm   
(22) 

while the conservation of energy gives: 

       NiNiCO 58581216

xkkk EEEQE   
(23)
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where Ex(
58Ni) is the excitation energy of 58Ni, and Q is calculated in the first part of this task. 

But since 12C and 16O have the same velocity, conservation of momentum reduced to: 

          NiNiOCO 5858161216 vmvmm 

 

 (24) 

Now we can easily find the kinetic energy of 58Ni: 

          
 

       
 

      
   ONi

CO
O

Ni2

OCO

Ni2

NiNi

2

NiNi
Ni

1658

21216
16

58

2161216

58

2585858258
58

mm

mm
E

m

vmm

m

vmvm
E

k

k











 

(25)

 

and finally the excitation energy of  58Ni: 

       

            
   

     
 

      
   

   
 

    
   

             
   ONi

CONiCO
O

ONi

CO

O

C
1O

ONi

CO
O

O

C
OO

ONi

CO
O

2

OC
O

NiCONi

1658

1216581216
16

1658

21216

16

12
16

1658

21216
16

16

12
1616

1658

21216
16

16212
16

58121658

mm

mmmmm
EQ

mm

mm

m

m
EQ

mm

mm
E

m

m
EEQ

mm

mm
E

vm
QE

EEQEE

k

k

kkk

kk

kkkx

















 














 

(26)

 

Note that the first bracket in numerator is approximately equal to the mass of transferred 

particle (the 4He nucleus), while the second one is approximately equal to the mass of target 

nucleus 54Fe. Inserting the numbers we get: 

    

MeV 866.10

99491.1593535.57

.1299491.1593535.57.1299491.15
50761.0Ni58







xE

 

(27)

 

 

 

Relativistic solution 

In the relativistic version, solution is found starting from the following pair of equations (the 

first one is the law of conservation of energy and the second one the law of conservation of 

momentum): 

   
 

 
 

 
  2582

258*

2212

221

2612

261
254

/Ni1

Ni

/C1

C

/O1

O
Fe

cv

cm

cv

cm

cv

cm
cm














  

(28)
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   
 

   
 

   
  2582

5858*

2212

2121

2612

6161

/Ni1

NiNi

/C1

CC

/O1

OO

cv

vm

cv

vm

cv

vm















 
All the masses in the equations are the rest masses; the 58Ni is NOT in its ground-state, but in 

one of its excited states (having the mass denoted with m*). Since 12C and 16O have the same 

velocity, this set of equations reduces to:  

     
 

 
  2582

58*

2612

2161
54

/Ni1

Ni

/O1

CO
Fe

cv

m

cv

mm
m







  

      
 

   
  2582

5858*

2612

612161

/Ni1

NiN

/O1

OCO

cv

vim

cv

vmm









 

 

(29)

 

 

Dividing the second equation with the first one gives: 

        
         2612542161

612161
58

/O1FeCO

OCO
Ni

cvmmm

vmm
v




  

(30)

 

 

The velocity of projectile can be calculated from its energy: 

   
 

  261

2612

261
16 O

/O1

O
O cm

cv

cm
Ekin 




  

   
    26116

261
2612

OO

O
/O1

cmE

cm
cv

kin 




 

   
   

2

26116

261
2612

OO

O
1/O 



















cmE

cm
cv

kin  

   
   

c
cmE

cm
v

kin




















2

26116

261
61

OO

O
1O

 
 

(31)

 

 

For the given numbers we get: 

   
 

km/s 104498.208172.099666.01

109979.2 15.9949110602.150

109979.2106605.115.99491
1O

72

2

2813

2827
61



























cc

cv
 

(32)

 

 

Now we can calculate: 

   

 
km/s 106946.1

08172.0193962.530.1299491.15

km/s 104498.20.1299491.15
Ni 6

2

7
58 




v  

(33)

 



41st international Physics Olympiad, Croatia – Theoretical Competition, July 19th 2010 7/8 

 
 

The mass of 58Ni in its excited state is then: 

 

        
 

 
 

 

a.m.u.  9470.57

a.m.u. 
106945.1

104498.2

08172.01

109979.2/106945.11
)0.1299491.15(

Ni

O

/O1

/Ni1
CON

6

7

2

286

58

61

2612

2582

216158*




















v

v

cv

cv
mmim

 

(34)

 

 

The excitation energy of 58Ni is then: 

        
MeV 8636.10MeV/J 10602.1/1000722.2

109979.2 101.660593535.579470.57NiNi

1312

2827-25858*







cmmEx

 

(35)

 

 

The relativistic and non-relativistic results are equal within 2 keV so both can be considered 

as correct –we can conclude that at the given beam energy, relativistic effects are not 

important. 

 

Task 5b) For gamma-emission from the static nucleus, laws of conservation of energy and 

momentum give: 

  recoil

58 Ni EEEx    

recoilpp   

(36)

 

Gamma-ray and recoiled nucleus have, of course, opposite directions. For gamma-ray 

(photon), energy and momentum are related as: 

cpE    (37)

  

 In part a) we have seen that the nucleus motion in this energy range is not relativistic, so we 

have: 

      258

2

58

2

58

2

recoil
Ni2Ni2Ni2

recoil

cm

E

m

p

m

p
E





 

(38)

 

Inserting this into law of energy conservation Eq. (36), we get: 

 
  258

2

recoil

58

Ni2
Ni

cm

E
EEEEx






  
(39)

 

This reduces to the quadratic equation: 
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      0NiNi2Ni2 582582582  xEcmEcmE   (40)

  which gives the following solution: 

        

         258582582258

582582258258

NiNiNi2Ni

2

NiNi8Ni4Ni2

cmEcmcm

Ecmcmcm
E

x

x






  

(41)

 

 Inserting numbers gives: 

MeV 8633.10E  (42)

  The equation (37) can also be reduced to an approximate equation before inserting numbers: 

 
MeV 8633.10

Ni2
1

258











cm

E
EE x

x
 

(43)

 

 The recoil energy is now easily found as: 

  keV 1.1Ni58

recoil  EEE x  (44)

  

Due to the fact that nucleus emitting gamma-ray (58Ni) is moving with the high velocity, the 

energy of gamma ray will be changed because of the Doppler effect. The relativistic Doppler 

effect (when source is moving towards observer/detector) is given with this formula: 











1

1
emitted,detector ff  

(45)

 

and since there is a simple relation between photon energy and frequency (E=hf), we get the 

similar expression for energy: 











1

1
emitted,detector EE  

(46)

 

where =v/c and v is the velocity of emitter (the 58Ni nucleus). Taking the calculated value of 

the 58Ni velocity (equation 29) we get: 

MeV 925.10
00565.01

00565.01
863.10

1

1
emitted,detector 














EE  

(47)

 

 

 


