Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Answer Form Experimental Problem No. 1 Diode laser wavelength

Task 1.1 Experimental setup.

(0.75)

1.1	Sketch the laser path in drawing of Task 1.1 and Write down the height h of the beam as measured from the table	1.0
	$h \pm \Delta h = (5.0 \pm 0.05) \times 10^{-2} \text{ m} (0.25)$	

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Experimental setup for measurement of diode laser wavelength

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:
---------------	-----------------	-----------------------------	----------	---------------------------

Task 1.2 Expressions for optical path differences.

1.2	The path differences are	0.5
	Case I: (0.25)	
	$\Delta_{\rm I}(n) = (BF + FP) - BP = (L_b - L_0) + \sqrt{L_0^2 + L_R^2(n)} - \sqrt{L_b^2 + L_R^2(n)}$	
	$= (L_b - L_0) + L_0 \sqrt{1 + \frac{L_R^2(n)}{L_0^2}} - L_b \sqrt{1 + \frac{L_R^2(n)}{L_b^2}}$	
	using $\sqrt{1+x} \approx 1 + \frac{1}{2}x$	
	$\approx (L_b - L_0) + L_0 \left(1 + \frac{1}{2} \frac{L_R^2(n)}{L_0^2} \right) - L_b \left(1 + \frac{1}{2} \frac{L_R^2(n)}{L_b^2} \right)$	
	$\Rightarrow \Delta_{\rm I}(n) \approx \frac{1}{2} L_R^2(n) \left(\frac{1}{L_0} - \frac{1}{L_b} \right)$	
	Case II: (0.25)	
	$\Delta_{\rm II}(n) = (FB + BP) - FP = (L_0 - L_a) + \sqrt{L_a^2 + L_L^2(n)} - \sqrt{L_0^2 + L_L^2(n)}$	
	$\approx (L_0 - L_a) + L_a \sqrt{1 + \frac{L_L^2(n)}{L_a^2}} - L_0 \sqrt{1 + \frac{L_L^2(n)}{L_0^2}}$	
	using $\sqrt{1+x} \approx 1 + \frac{1}{2}x$	
	$\approx (L_0 - L_a) + L_a \left(1 + \frac{1}{2} \frac{L_L^2(n)}{L_a^2} \right) - L_0 \left(1 + \frac{1}{2} \frac{L_L^2(n)}{L_0^2} \right)$	
	$\Rightarrow \Delta_{\mathrm{II}}(n) \approx \frac{1}{2} L_{L}^{2}(n) \left(\frac{1}{L_{a}} - \frac{1}{L_{0}} \right)$	

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:
---------------	-----------------	-----------------------------	----------	---------------------------

Task 1.3 Measuring the dark fringe positions and locations of the blade. Use additional sheets if necessary.

TABLE I (2.5)

n	$(l_{\rm R}(n)\pm 0.1)\times 10^{-3} {\rm m}$	$(l_L(n)\pm 0.1)\times 10^{-3}$ m	x_R	<i>x</i> _{<i>L</i>}
0	-7.5	1.1	0.791	0.935
1	-10.1	3.7	1.275	1.369
2	-12.4	6.4	1.620	1.696
3	-14.0	8.2	1.903	1.968
4	-15.6	10.0	2.151	2.208
_	17.0	11.4	0.070	2.424
5	-17.2	11.4	2.372	2.424
6	-18.4	12.2	2.574	2.622
7	-19.7		2.761	
8	-20.7		2.937	
9	-22.0		3.102	
10	-23.0		3.260	
11	-24.1		3.410	

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

1.3Report positions of the blade and their difference with higher precision:3.25
$$L_b \pm \Delta L_b = (653 \pm 1) \times 10^{-3}$$
 m (0.25) LABEL (I) (measuring tape) $L_a \pm \Delta L_a = (628 \pm 1) \times 10^{-3}$ m (0.25) LABEL (I) (measuring tape) $d = L_b - L_a = (24.6 \pm 0.1) \times 10^{-3}$ m (0.25) LABEL (H) (caliper)

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:
---------------	-----------------	-----------------------------	----------	---------------------------

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:
---------------	-----------------	-----------------------------	----------	---------------------------

Task 1.4 Performing a statistical and graphical analysis.

1.4 A procedure:
From the condition of dark fringes and Task 1.2, we have

$$\frac{1}{2}L_{R}^{2}(n)\left(\frac{1}{L_{0}}-\frac{1}{L_{b}}\right)=\left(n+\frac{5}{8}\right)\lambda$$
and

$$\frac{1}{2}L_{L}^{2}(n)\left(\frac{1}{L_{a}}-\frac{1}{L_{0}}\right)=\left(n+\frac{7}{8}\right)\lambda$$
Using (1.5), $L_{R}(n)=l_{R}(n)-l_{0R}$ and $L_{L}(n)=l_{L}(n)-l_{0L}$ we can rewrite

$$\frac{1}{2}(l_{R}(n)-l_{0R})^{2}\left(\frac{1}{L_{0}}-\frac{1}{L_{b}}\right)=\left(n+\frac{5}{8}\right)\lambda$$

$$\Rightarrow l_{R}(n)=\sqrt{\frac{2L_{b}L_{0}}{L_{b}}-L_{0}}\lambda\sqrt{n+\frac{5}{8}}+l_{0R}$$
and

$$\frac{1}{2}(l_{L}(n)-l_{0L})^{2}\left(\frac{1}{L_{a}}-\frac{1}{L_{0}}\right)=\left(n+\frac{7}{8}\right)\lambda$$

$$\Rightarrow l_{L}(n)=\sqrt{\frac{2L_{a}L_{0}}{L_{0}}-L_{a}}\lambda\sqrt{n+\frac{7}{8}}+l_{0L}$$
These can be cast as equations of a straight line, $y = mx + b$.
Case I:
 $y_{R} = l_{R}$ $x_{R} = \sqrt{n+\frac{5}{8}}$ $m_{R} = \sqrt{\frac{2L_{b}L_{0}}{L_{b}}-L_{0}}\lambda$ $b_{R} = l_{0R}$
Case II:
 $y_{L} = l_{L}$ $x_{L} = \sqrt{n+\frac{7}{8}}$ $m_{L} = \sqrt{\frac{2L_{a}L_{0}}{L_{0}}-L_{a}}\lambda$ $b_{L} = l_{0L}$
(1.25)

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Perform least squares analysis of above equations. In Table I, we write down the values
$$x_R$$
 and x_L .
One finds:
 $m_R \pm \Delta m_R = (-6.39 \pm 0.07) \times 10^{-3} \text{ m}$
 $m_L \pm \Delta m_L = (6.83 \pm 0.19) \times 10^{-3} \text{ m}$
and (values of l_{0R} and l_{0L})
 $l_{0R} \pm \Delta l_{0R} = b_R \pm \Delta b_R = (-2.06 \pm 0.17) \times 10^{-3} \text{ m}$
 $l_{0L} \pm \Delta l_{0L} = b_L \pm \Delta b_L = (-5.33 \pm 0.36) \times 10^{-3} \text{ m}$
The equations used in the least squares analysis:
 $\frac{N \sum_{n=1}^{N} x_n y_n - \sum_{n=1}^{N} x_n \sum_{n'=1}^{N} y_{n'}}{\Delta}$
 $m = \frac{N \sum_{n=1}^{N} x_n^2 \sum_{n'=1}^{N} \sum_{n'=1}^{N} x_n \sum_{n'=1}^{N} x_n y_{n'}}{\Delta}$
where
 $\Delta = N \sum_{n=1}^{N} x_n^2 - \left(\sum_{n=1}^{N} x_n\right)^2$
with N the number of data points.
The uncertainty is calculated as
 $(\Delta m)^2 = N \frac{\sigma^2}{\Delta}$, $(\Delta b)^2 = \frac{\sigma^2}{\Delta} \sum_{n=1}^{N} x_n^2$ with,
 $\sigma^2 = \frac{1}{N-2} \sum_{n=1}^{N} (y_n - b - mx_n)^2$
(2.0)
REFERENCE: P.R. Bevington, *Data Reduction and Error Analysis for the Physical Sciences*, McGraw-Hill, 1969.

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:
---------------	-----------------	-----------------------------	----------	---------------------------

Task 1.5 Calculating λ .

1.5 From any slope and the value of
$$L_0$$
 one finds,

$$\lambda = \frac{L_b - L_a}{2L_a L_b} \frac{m_R^2 m_L^2}{m_R^2 + m_L^2}$$
Using the suggestion to replace $d = L_b - L_a$, we can write

$$\lambda = \frac{d}{2L_a L_b} \frac{m_R^2 m_L^2}{m_R^2 + m_L^2}$$

$$\lambda \pm \Delta \lambda = (663 \pm 25) \times 10^{-9} \text{ m}$$
The uncertainty may range from 15 to 30 nanometers.
A precise measurement of the wavelength is $\lambda \pm \Delta \lambda = (655 \pm 1) \times 10^{-9} \text{ m}$.
The formula for the uncertainty,

$$\Delta \lambda = \sqrt{\left(\frac{\partial \lambda}{\partial d}\right)^2} \Delta d^2 + \left(\frac{\partial \lambda}{\partial L_a}\right)^2 \Delta L_a^2 + \left(\frac{\partial \lambda}{\partial L_b}\right)^2 \Delta L_b^2 + \left(\frac{\partial \lambda}{\partial m_R}\right)^2 \Delta m_R^2 + \left(\frac{\partial \lambda}{\partial m_L}\right)^2 \Delta m_L^2}$$
one finds,

$$\frac{\partial \lambda}{\partial d} = \frac{\lambda}{d}, \quad \frac{\partial \lambda}{\partial L_b} = \frac{\lambda}{L_b}, \quad \frac{\partial \lambda}{\partial L_a} = \frac{\lambda}{L_a} \quad \text{and} \quad \frac{\partial \lambda}{\partial m_R} = \frac{2m_L^2}{m_R} \frac{\lambda}{m_L^2 + m_R^2}$$
and analogously for the other slope.
One can calculate directly these quantities. However, one may note that
the errors due to L_a, L_b and d are negligible. Moreover, $m_R^2 \approx m_L^2$ and
 $L_a \approx L_b$. This implies,

$$\frac{\partial \lambda}{\partial m_R} \approx \frac{\lambda}{m_R} \approx \frac{\partial \lambda}{\partial m_L}$$
. Thus,
 $\Delta \lambda \approx \sqrt{2} \frac{\lambda}{m_L} \Delta m_L \approx (25 \times 10^{-9})$ m

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Answer Form

Experimental Problem No. 2

Birefringence of mica

Task 2.1 a) Experimental setup for I_{p} . (0.5 points)

Task 2.1 b) Experimental setup for I_o . (0.5 points)

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:
---------------	-----------------	-----------------------------	----------	---------------------------

Experimental setup for measurement of mica birefringence

Task 2.2 The scale for angles.

2.2	The angle between two consecutive black lines is			
	$\theta_{int} = 3.6$ degrees because there are 100 lines.			

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:
---------------	-----------------	-----------------------------	----------	---------------------------

Tasks 2.3 Measuring I_p and I_o . Use additional sheets if necessary.

	IABLE I (3 points)					
$\overline{\theta}$ (degrees)	$(I_P \pm 1) \times 10^{-3}$ V	$(I_o \pm 1) \times 10^{-3}$ V				
-3.6	46.4	1.1				
0	48.1	0.2				
3.6	47.0	0.6				
7.2	46.0	2.0				
10.8	42.3	4.9				
14.4	38.2	9.0				
18.0	33.9	12.5				
21.6	27.7	17.9				
25.2	23.4	22.0				
28.8	17.8	27.0				
32.4	12.5	31.7				
36.0	8.8	34.8				
39.6	5.2	38.0				
43.2	3.6	39.4				
46.8	3.2	39.6				
50.4	4.5	38.7				
54.0	6.9	36.6				
57.6	10.3	33.6				
61.2	14.7	29.4				
64.8	20.1	24.7				
68.4	25.4	19.7				
72.0	30.5	14.7				
75.6	36.6	10.2				
79.2	40.7	6.1				
82.8	44.3	3.2				
86.4	46.9	1.0				
90.0	47.8	0.2				

TABLE I(3 points)

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:
---------------	-----------------	-----------------------------	----------	---------------------------

93.6	47.0	0.4
97.2	45.7	2.0

Parallel I_P and perpendicular I_O intensities vs angle $\overline{\theta}$.

GRAPH NOT REQUIRED!

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Task 2.4 Finding an appropriate zero for θ .

2.4	a) Graphical analysis	1.0
	The value for the shift is $\delta \overline{\theta} = -1.0$ degrees.	
	Add the graph paper with the analysis of this Task.	
	b) Numerical analysis	
	From Table I choose the first three points of $\overline{\theta}$ and $I_o(\overline{\theta})$: (intensities in millivolts)	
	$(x_1, y_1) = (-3.6, 1.1)$ $(x_2, y_2) = (0, 0.2)$ $(x_3, y_3) = (3.6, 0.6)$	
	We want to fit $y = ax^2 + bx + c$. This gives three equations:	
	$1.1 = a(3.6)^2 - b(3.6) + c$ 0.2 = c	
	$0.6 = a(3.6)^2 + b(3.6) + c$	
	second in first $\Rightarrow b = \frac{-0.9 + a(3.6)^2}{3.6}$	
	in third $\Rightarrow 0.6 = a((3.6)^2 + (3.6)^2) - 0.9 + 0.2$	
	$\Rightarrow a = 0.050 \qquad b = -0.069$	
	The minimum of the parabola is at:	
	$\overline{\theta}_{\min} = -\frac{b}{2a} \approx 0.7$ degrees	
	Therefore, $\delta \overline{\theta} = -0.7$ degrees.	

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:
---------------	-----------------	-----------------------------	----------	---------------------------

Task 2.5 Choosing the appropriate variables.

2.5	Equation (2.4) for the perpendicular intensity is	0.5
	$\bar{I}_{O}(\theta) = \frac{1}{2} (1 - \cos \Delta \phi) \sin^{2}(2\theta)$	
	This can be cast as a straight line $y = mx + b$, with	
	$y = \overline{I}_o(\theta)$, $x = \sin^2(2\theta)$ and $m = \frac{1}{2}(1 - \cos\Delta\phi)$	
	from which the phase may be obtained.	
	NOTE: This is not the only way to obtain the phase difference. One may, for instance, analyze the 4 maxima of either $\overline{I}_{P}(\theta)$ or $\overline{I}_{Q}(\theta)$.	

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:
---------------	-----------------	-----------------------------	----------	---------------------------

Task 2.6 Statistical analysis and the phase difference.

2.6 To perform the statistical analysis, we shall then use

$$y = \bar{I}_o(\theta)$$
 and $x = \sin^2(2\theta)$.
Since for $\theta: 0 \to \frac{\pi}{4}$, $x: 0 \to 1$, we use only 12 pairs of data points to
cover this range, as given in Table II.
 x may be left without uncertainty since it is a setting. The uncertainty in y
may be calculated as
 $\Delta \bar{I}_o = \sqrt{\left(\frac{\bar{\mathcal{A}}_o}{\mathcal{A}_o}\right)^2 \Delta I_o^2 + \left(\frac{\bar{\mathcal{A}}_p}{\mathcal{A}_p}\right)^2 \Delta I_p^2}$ and one gets
 $\Delta \bar{I}_o = \frac{\sqrt{I_o^2 + I_p^2}}{(I_o + I_p)^2} \Delta I_o \approx 0.018$, approximately the same for all values.

$\overline{\theta}$ (degrees)	$x = \sin^2(2\theta)$	$y = \bar{I}_o \pm 0.018$
2.9	0.010	0.013
6.5	0.051	0.042
10.1	0.119	0.104
13.7	0.212	0.191
17.3	0.322	0.269
20.9	0.444	0.392
24.5	0.569	0.484
28.1	0.690	0.603
31.7	0.799	0.717
35.3	0.890	0.798
38.9	0.955	0.880
42.5	0.992	0.916

TABLE II

Country Code: Studen	t Number: F	Experimental Problem No:	Page No:	Total Number of Pages:
----------------------	-------------	-----------------------------	----------	---------------------------

We now perform a least square analysis for the variables y vs x in Table II. The slope and y -intercept are:	1.
$m \pm \Delta m = 0.913 \pm 0.012$	
$b \pm \Delta b = -0.010 \pm 0.008 \tag{1.25}$	
The formulas for this analysis are: $ \frac{N\sum_{n=1}^{N} x_n y_n - \sum_{n=1}^{N} x_n \sum_{n'=1}^{N} y_{n'}}{\Delta} $ $ m = \frac{\sum_{n=1}^{N} x_n^2 \sum_{n'=1}^{N} y_{n'} - \sum_{n=1}^{N} x_n \sum_{n'=1}^{N} x_{n'} y_{n'}}{\Delta} $ $ b = \frac{m + 1}{\Delta} $	
where $\Delta = N \sum_{n=1}^{N} x_n^2 - \left(\sum_{n=1}^{N} x_n\right)^2$	
with N the number of data points. The uncertainty is calculated as	
$(\Delta m)^2 = N \frac{\sigma^2}{\Delta}$, $(\Delta b)^2 = \frac{\sigma^2}{\Delta} \sum_{n=1}^N x_n^2$ with,	
$\sigma^{2} = \frac{1}{N-2} \sum_{n=1}^{N} (y_{n} - b - mx_{n})^{2}$	
with $N = 12$ in this example.	
Include the accompanying plot or plots. (1.0)	

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Country Code: S	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:
-----------------	-----------------	-----------------------------	----------	---------------------------

Task 2.7 Calculating the birefringence $|n_1 - n_2|$.

2.7	Write down the width of the slab of mica you used,	1.0
	$L \pm \Delta L = (100 \pm 1) \times 10^{-6} \text{ m}$	
	Write down the wavelength you use,	
	$\lambda \pm \Delta \lambda = (663 \pm 25) \times 10^{-9} \text{ m} \text{ (from Problem 1)}$	
	Calculate the birefringence	
	$ n_1 - n_2 \pm \Delta n_1 - n_2 = (3.94 \pm 0.16) \times 10^{-3}$	
	The birefringence is between 0.003 and 0.005. Nominal value 0.004	
	Write down the formulas you used for the calculation of the uncertainty of the birefringence.	
	Since the width $L > 82$ micrometers, we use	
	$2\pi - \Delta\phi = \frac{2\pi L}{\lambda} n_1 - n_2 $	
	The error is	
	$\Delta n_1 - n_2 = \sqrt{\left(\frac{\partial n_1 - n_2 }{\partial \lambda}\right)^2} \Delta \lambda^2 + \left(\frac{\partial n_1 - n_2 }{\partial L}\right)^2 \Delta L^2 + \left(\frac{\partial n_1 - n_2 }{\partial \Delta \phi}\right)^2 \Delta (\Delta \phi)^2$	

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Task 2.6 and 2.7 (Alternative) Statistical Analysis and the phase difference. Calculating the birefringence $|n_1 - n_2|$.

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

2.6 2.7	Since the data may appear somewhat disperse and/or the errors in the intensities may be large, a graphical analysis may be performed.	1.0
	In the accompanying plot, it is exemplified a simple graphical analysis: first the main slope is found, then, using the largest deviations one can find two extreme slopes.	
	The final result is,	
	$m = 0.91 \pm 0.08$ and $b = -0.01 \pm 0.04$	
	The calculation of the birefringence and its uncertainty follows as before. One now finds,	
	$ n_1 - n_2 \pm \Delta n_1 - n_2 = (3.94 \pm 0.45) \times 10^{-3}.$	
	A larger (more realistic) error.	

Country Code:Student Number:Experimental Problem No:Page No:Total Number of Pages:	r
--	---

Country Code:	Student Number:	Experimental Problem No:	Page No:	Total Number of Pages:

Comparison of experimental data (normalized intensities \bar{I}_p and \bar{I}_o) with fitting (equations (2.3) and (2.4)) using the calculated value of the phase difference $\Delta \phi$.

GRAPH NOT REQUIRED!